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A B S T R A C T

In the present work, a nonlinear finite element method is utilized to solve the coupled system of time-dependent
phase field and elasticity equations for phase transformations (PTs) at the nanoscale in the Cartesian coordinate
system. The Galerkin residual weighted method is used to derive the finite element equations. The alpha family
and the explicit methods are used for time discretization. Since the local free energy includes a 3rd degree
polynomial in terms of the phase order parameter the kinetics Ginzburg-Landau equation is a nonlinear function
of the order parameter. Thus, the Newton-Raphson method is used to linearize the nonlinear equation. Linear
triangle elements have been used in the self-developed FEM code. Stability and mesh and time step in-
dependence of the solutions have been discussed. The system of equations and the numerical procedure are
verified using the existing analytical solutions. For the phase field equation, the isolated boundary condition is
considered everywhere, imposing the constant surface energy over the simulation domain. Examples of austenite
(A) to martensite (M) phase transformations in 2D for a single martensitic variant are presented including
planar/nonplanar interface propagation, martensitic nucleus growth and reverse phase transformation under
thermal and different mechanical loadings. The A-M interface velocity, width and energy have been obtained.
The threshold stresses for the growth of a martensitic nucleus in an austenitic matrix under uniaxial and biaxial
loadings and for reverse PTs are calculated. It is found that the numerical results are in a good agreement with
the transformation work based criterion. The developed FEM code represents a proper and accurate tool to study
the PTs including nucleation, growth and propagation of transformed phase, reverse PTs and equilibrium and
stability conditions for PTs. A further development of the numerical procedure provides a powerful tool for the
study of more complicated PTs-related phenomena in 2D and 3D.

1. Introduction

Martensitic phase transformation (MPT) is defined as a first-order,
displacive, and diffusionless transformation which creates nano and
microstructures of different complexities and mechanical properties in
various materials such as shape memory alloys, steel and ceramics.
During this transformation, austenite (A) phase which has a cubic lat-
tice and is stable at high temperatures transforms to martensite (M)
which has a lower-symmetry, such as tetragonal or rhombic, lattice and
is stable at low temperatures. Mechanical loading, reducing tempera-
ture and varying surface energy are the main reasons for such a
transformation in small scales. The deformation caused by martensitic
or any other types of displacive PTs is defined by a transformation
strain tensor. There are three possible martensitic variants which are
perpendicular to each other and the strain tensor components of each
variant is obtained by permutation of those of other variants [1,2].

In contrast to the theories which assume some geometry for mar-
tensitic nano/microstructures [3–8], the phase-field method (PFM) is
broadly used for modeling of MPTs without any assumption on solution
geometry [9–31].

In the PFM, each martensitic variant is described by an order
parameter ηi, and its evolution is described by the phase field or the
Ginzburg-Landau (GL) equations. These equations linearly connect the
rate of change of ηi to the thermodynamic driving forces conjugate to ηi
which are the functional derivatives of the free energy with respect to
ηi. Considering stresses, martensitic nanostructures can be resolved by
solving the coupled system of the GL and elasticity equations. The result
can consist of different phases where between any of two contacting
phases, there exists a diffusive interface within which ηi smoothly varies
from the value of one phase to that of the contacting phase. The PFM
has been broadly used for modeling of various types of PTs in different
scales in many materials. A 3D Landau theory for multivariant stress-
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induced martensitic PTs was proposed in [16–18] where different free
energy potentials, kinetics and nucleation process as well as PT equi-
librium and stability conditions were discussed and important features
of known experimental stress-strain curves involving PTs were de-
scribed. Total strain related [10–13] and transformation strain related
order parameters [14,15,19] were suggested to build different PFMs.
The PFM was presented at microscale problems in [19,21]. Levitas et al.
introduced an internal friction for the interface motion in [22,23]. A
multiscale PFM to MPTs was proposed in [24]. The PF microelasticity
was used to simulate heterogeneous nucleation and growth in mar-
tensitic alloys [25]. Surface-induced PTs due to the variable surface
energy were described in [26,28]. A-M and M-M interface widths and
energies were studied in [27] and twin nanostructures were obtained
under overcooling. Inertial effect on PTs was studied in [29]. The in-
terface stress was introduced in [28,32,33]. Large-strain based PFM and
MPTs simulations were presented in [33,34]. The FCC to BCC marten-
sitic transformation in Fe–Ni polycrystalline alloy with plastic de-
formation was investigated by the elastoplastic phase-field model in
two-dimensions [35]. Analytical solutions for diffuse interface propa-
gation and different models for athermal interface friction were pro-
posed and PTs were numerically studied with the focus on the effect of
the athermal friction in [23]. A PFM of displacive transformations was
developed [36] in which the free energy is expressed in terms of the
transformation strain. Elastoplastic phase-field models were employed
to study incoherent butterfly-type PTs including plastic accommodation
in Fe–30 wt%Ni [37] and Fe–0.3%C [38] alloys. A PFM was developed
to model the phase evolution during the beta to gamma transformation
in ZreNb [39]. The phase field microelasticity model was used to model
FCC→ BCT transformations in a steel polycrystalline using the finite
element method [40]. A large strain based PFM for multivariant MPTs
was proposed, the equilibrium and stability conditions were derived
and PTs in NiAl, boron nitride, and graphite to diamond were simulated
[34]. Phase field modeling of MPTs was reviewed in [41]. Bainitic PTs
were studied using the PFM which model could reproduce the in-
complete transformation phenomenon [42]. Stress-induced PTs were
modeled in nanotubes, beams and nanosheets with voids using a finite
strain mechanics-based phase field model and the transformation in-
duced buckling of nanobeams was discussed [43]. A PFM was devel-
oped for the tetragonal-to-monoclinic PT in Zr and the PF equations
were solved using the FEM for martensitic twinning mechanism [44]. A
thermodynamically consistent PFM for PTs was developed introducing
correct interface stresses with the help of some geometric nonlinearities
and new expression for the free energy [32,45]. A FPM was developed
for modeling of the stress-induced MPT involving plasticity and aniso-
tropic elastic properties of steels and using the FEM [46]. The effect of
external loading on the martensitic transformation in polycrystalline
steel was analyzed using an elasto-plastic phase field model [47]. FCC to
BCC MPTs in a polycrystalline were simulated based on the combina-
tion of inhomogeneous elasticity model and the phase-field equations
[48]. A phase field model was presented to capture both forward and
reverse tetragonal to monoclinic transformations and shape memory
effect in polycrystalline zirconia [49]. The stress-induced tetragonal-to-
monoclinic PT in Zr was investigated using a two-dimensional elastic
phase field model [50]. A new phase-field model was proposed which
separated nucleation from kinetics; and an evolution law that came
from a conservation statement for interfaces [51]. This model was
characterized through 1D and 2D numerical solutions [52]. A thermo-
dynamically consistent PFM for stress-induced PTs between different
variants were developed [53]. Cyclic phase transformations in the Fe–C
alloy were simulated in 2D using a PFM where the stagnant stages were
described by a Gibbs-energy dissipation model [54]. Beta to omega PT
in ZreNb alloys was simulated using a elastoplastic PFM and the 3D
FEM [55]. Size-dependent martensitic microstructures considering
phase interfaces and twin boundaries were studied in CuAlNi shape
memory by a PFM and 2D FEM discretization [56]. Internal stresses
associated with MPT in MnCu were obtained using a FPM [57]. A PFM

of martensitic PTs was proposed based on pathway tree and was applied
to 2D square-to-hexagonal transformations which resulted in successive
transformations and subsequent numerous variants [58]. Beta to Delta
temperature induced PTs were simulated using a proposed PFM and the
FEM of octagen energetic crystal. The key point was a penalizing term
that allowed controlling the third phase within the interface between
two other phases [59]. Peritectic phase transformation of FeMn alloys
was studied utilizing a phase-field method in 1-D and 2-D [60]. A PFM
was presented for modeling of the lower bainite including carbon dif-
fusion and carbide formation via the FEM [61]. The strong effect of
surface tension and energy on PTs was studied in NiAl studied using a
PFM in 2D [62]. A thermodynamically consistent, large-strain, multi-
PFM was generalized for the case with anisotropic interface energy and
interface stresses and analytical solutions for propagating interfaces and
critical nuclei were proposed [63]. A PFM was used for shock-induced
solid-solid phase transformation and microstructural evolution [64]. A
multi-phase-field model was proposed to simulate the peritectic phase
transition in Fe-C alloys [65]. Microstructure evolution in Ferritic-
martensitic dual-phase steels (DP) was simulated using a multiphase-
field modeling [66]. Analytical and numerical solutions were given for
elastic stress within a martensitic twin based on a finite strain phase
field approach [67]. Cyclic ferrite-austenite PTs were studied using the
multi-PFM and the FDM [68]. MPTs and plasticity under thermal cy-
cling in steels were simulated using a PFM [69]. Thermally and stress-
induced MPTs in Mn–Cu SMAs were studied using a non-isothermal
PFM where the thermoelastic equilibrium between twinned martensite
and austenite was obtained and internal stress field was revealed [70].
Thermomechanical properties of polycrystalline SMAs originated from
the temperature and stress-induced martensitic PTs were studied using
a PFM where the inertial and the latent heat effects as well as the grain
boundary energy change were considered [71]. Bainite-ferrite PT in
TRIP steel is modeled using a PFM. [72]. Thermal-, stress and surface
induced martensitic transformations were investigated in the presence
of defects utilizing the PFM [73–77].

In the present work, a nonlinear finite element method is used to
solve the coupled system of time-dependent phase field and elasticity
equations for phase transformations (PTs) between austenite (A) and
martensite (M) in the Cartesian coordinate system. The Galerkin re-
sidual weighted method is used to derive the finite element equations.
The alpha family and the explicit methods are used for time dis-
cretization. Since the local free energy includes a 3rd degree poly-
nomial in terms of the phase order parameter the kinetics Ginzburg-
Landau equation is a nonlinear function of the order parameter. Thus,
the Newton-Raphson method is used to linearize the nonlinear equa-
tion. Linear triangle elements have been used in the developed FEM
code. Stability and mesh and time step independence of the solutions
have been discussed. The system of equations and the numerical pro-
cedure are verified using the existing analytical solutions. For the phase
field equation, the isolated boundary condition is considered every-
where, imposing the constant surface energy over the simulation do-
main. Examples of cubic to tetragonal phase transformations in 2D for a
single martensitic variant are presented including plane interface pro-
pagation, martensitic nucleus growth and reverse phase transformation
under thermal and different mechanical loadings. The A-M interface
velocity, width and energy have been obtained. The threshold stresses
for the growth of a martensitic nucleus in an austenitic matrix under
uniaxial and biaxial loadings and for reverse PTs are calculated. It is
found that the numerical results are in a good agreement with the
transformation work based criterion. The developed FEM code re-
presents a proper and accurate tool to study the PTs including nuclea-
tion, growth and propagation of transformed phase, reverse PTs and
equilibrium and stability conditions for phase transformations under
mechanical and thermal loadings in 2D.
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