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A B S T R A C T

A novel phase field model has been developed to study the effect of coherent precipitate on the Zener pinning of
matrix grain boundaries. The model accounts for misfit strain between precipitate and matrix as well as the
elastic inhomogeneity and anisotropy between them. The results show that increase in elastic misfit, elastic
inhomogeneity, and elastic anisotropy increases the coarsening rate of the precipitates. Increased coarsening of
precipitates in turn decreases the pinning of grain boundaries. Therefore, increase in misfit strain, elastic in-
homogeneity and anisotropy mostly negatively affect the Zener pinning through coherent precipitate. This study
shows elastic anisotropy gives rise to the needle shape precipitate. It has also been shown that these needle
shaped precipitates are not very effective in Zener pinning. This study provides an understanding into the effect
of coherent precipitate on the Zener pinning of matrix grain boundaries. To design a material with smallest
possible grain size, coherent precipitate with least lattice misfit and highest elastic modulus will be most ef-
fective.

1. Introduction

The grain size and morphology in polycrystalline materials often
play an important role in determining the properties of materials. A
wide gamut of material properties such as yield strength [1] and ulti-
mate tensile strength [2], creep [3], fracture resistance [4], oxidation
[5], corrosion resistance [6,7], electrical [8], magnetic [9], and optical
[10], properties can be altered by modifying the grain size and mor-
phology. In systems such as aluminum [11,12], aluminum based alloys
[13], micro-alloyed steels [14], and nickel based superalloys [15], re-
duction in grain size improves the mechanical strength. Thus, it is im-
perative to understand the external factors such as solute segregation,
precipitate nucleation or second phase addition by which we can con-
trol grain sizes and morphology to obtain desired properties depending
on applications.

One of the simplest and possibly the most profound way of con-
trolling the grain size is by means of introducing second phase in form
of particles or precipitates [16]. The role of second phase particles or
precipitates on the refining of the grain size has been first proposed by
Smith and Zener [17,18]. This effect which is called Zener pinning
works by pinning the grain boundaries at the particle-grain interface. In
Zener pinning, second phase size, morphology, volume fraction, co-
herency, anisotropic interfacial energy and even the coarsening rate of
the second phase particle affect the final pinning [19].

Theoretical models have been extensively employed to understand
the interactions of these afore mentioned parameters in Zener pinning.
Different computational techniques such as Monte-Carlo Potts models
[20], front-tracking-type models [21], and phase field models [22,23]
has been used to understand the Zener pinning phenomenon. Among
these simulation techniques, we concentrate on phase field model to
understand the Zener pinning phenomenon. The phase field model is a
diffuse-interface model where the evolution of arbitrary complex grain
and precipitate morphologies can be studied without any presupposi-
tion on their shape or distribution. Additionally, phase field model si-
mulation results have also shown to be qualitatively consistent with
experimental observations in many different types of systems and
problems [24–29].

Previously through phase field model, the effect of volume fraction,
shape, size, anisotropy and coarsening of the second phase particles on
Zener pinning has already been studied in detail [21,30,23]. One of the
important aspect to consider is the coherency of the second phase
particles in Zener pining which has not been studied in much detail.
Due to coherency between the precipitate and matrix, the misfit strain
can induce elastic stress, which can alter the coarsening behavior of the
precipitates. Changes in the coarsening kinetics of the precipitate in
turn can influence the Zener pinning drag.

Wang et. al. [31] have investigated through a phase field model the
effect of misfit strain of the Zener pinning by coherent precipitates. In
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that model, the inhomogeneity in modulus between the matrix and
second phase particles was not included. But, in practical applications,
the precipitate modulus can be significantly different from that of the
matrix phase. Such inhomogeneity in elastic modulus can in turn
change the coarsening kinetics which has been implemented in our
model. Additionally, we have inspected the effect of anisotropy in the
elastic modulus which has a significant influence in changing the pre-
cipitate morphology from globular to needle shape.

Our article is organized as follows: In the Section 2, we present the
details our phase field model. In the Section 3, we have discussed the
results of our phase field simulations by systematically investigating the
effect of misfit strain, elastic inhomogeneity, and anisotropy on grain
coarsening kinetics. Additionally, we have studied the effect of different
particle morphology which arises from the elastic anisotropy. Finally,
the Section 4 contains the succinct conclusions of our work.

2. Methods

In our phase field model, the microstructure consists of two phases
i.e. matrix and second phase particles (or precipitates). There exists a
misfit between second phase and matrix. The matrix is polycrystalline
whereas precipitate is single crystalline.

2.1. Free energy functionals

The total free energy (Ft) of system described by the sum of che-
mical energy (Fch) and elastic energy (Fel) i.e. = +F F Ft ch el. Fchem of the
system with inhomogeneities in the field of c tr( , ) and

= …η t i nr( , ); 1, 2, ,i describes n unique grain orientations in the matrix
phase is given by,
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where Nv: number of molecules per unit volume, f c η( , )i0 : bulk free
energy density, κc: gradient energy co-efficient due to composition
c tr( , ) variable, κi

η: gradient energy coefficient due to order parameter
η tr( , )i variable, v: volume of our domain of interest, r: real space
vector. The bulk free energy density f c η( , )i0 is given by [25],
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where ζ η( )i is expressed as [25],
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and the parameters A B Z, , in Eq. (2) are constants.

2.2. Elastic energy

In our phase field model, the source of misfit arises due to the
compositional heterogeneity between the matrix and precipitate. This
misfit introduces the elastic energy in the system. The elastic energy
contribution of the total free energy is given by,

∫= ∊F σ dvr r1
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el

ij
el

(4)

where σ r( )ij
el : elastic stress tensor, ∊ r( )ij

el : elastic strain tensor and ∊ r( )ij
el

given by following equation,
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where ∊ r( )ij
0 : position dependent eigenstrain, ∊ r( )ij : total strain which is

given by following equation,
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Assuming that, there is no rotational component to the displacement
field and phases obey the Hooke′s law (i.e. both phases are linear
elastic). Hence,
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where C r( )ijkl : elastic modulus tensor. Now substituting the values of
∊ r( )ij

el from Eq. (7) we obtain,
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As the stress field obeys the equation of mechanical equilibrium. Hence,
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eigen strain, ∊ r( )ij
0 expressed as,

∊ = ∊θ c δr( ) ( )ij
c c

ij
0

(10)

here θ c( )c is a shape function which is approximated as a linear function
(following Vegard’s law[32]) and expressed as,
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θ c( )c give value 1.0 at precipitate and 0.0 at matrix. In between particle
and matrix (interface region), it takes values in between 1.0 and ∊0.0, c:
misfit strain between precipitate and matrix, δij: Kronecker delta.

We are solving the equations for a plane strain approximation i.e.
there is no eigenstrain in the z-direction.

2.3. Kinetics of microstructure evolution

We numerically solve Cahn–Hilliard equation for the evolution of
composition c tr( , ) and Allen–Cahn equation for order parameters
η tr( , )i .

Cahn–Hilliard equation[33] is given by,

∂
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M is mobility and is not a function of composition c( ) and order
parameter η μ( ), is chemical potential and defined as,
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The final form of Cahn–Hilliard equation will be,
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We use Allen–Cahn equation[34] for the evolution of the order para-
meters,
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where L is relaxation coefficient. δ
δηi

represents the variational deriva-

tive with respective to ηi. Now,
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and
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