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A B S T R A C T

A finite element formulation of the “minimal” solidification model is presented for the prediction of macro-
segregation during two-dimensional (2D) columnar solidification of binary alloys. A fractional step method is
extended to solve the thermosolutal convection that has a damping in the mushy zone during solidification.
Using this method, the velocity and pressure are decoupled and interpolated by linear equal-order triangular
elements, resulting in decoupled systems that can be solved simply and efficiently. For convection-diffusion
equations of energy, solute and momentum, the consistent streamline upwind Petrov-Galerkin (SUPG) method
and the second-order Crank-Nicolson scheme are used for the discretization and integration over the spatial
domain, respectively. A solution procedure is designed to couple the resolutions of conservations of energy,
solute and momentum, as well as the microsegregation model at an overall computational efficiency and ac-
curacy. The formulation is first validated and then applied to predict macrosegregation during solidification of
Pb-18 wt%Sn and Sn-10 wt%Pb alloys in a rectangular mold. The formation of macrosegregation is investigated,
and comparisons with another finite element method (FEM) based code are made.

1. Introduction

Macrosegregation, i.e., chemical heterogeneities at macroscopic
scale, is a challenge in many solidification processes, because it dete-
riorates microstructure and mechanical properties of the final products,
causing increased economic and environmental costs. It has been ac-
knowledged that the macrosegregation is caused by relative movements
of solid and liquid phases, which are related to the transport phe-
nomena that take place over several characteristic length scales [1–3].
Numerical models were originally concentrated on the effect of solute
redistribution, and included only buoyancy-driven convection in the
interdendritic liquid [4–9]. Subsequently, transport equations ac-
counting for different length scales were derived by a volume averaging
technique [10–12] or mixture theory [13]. Using the two methods, a
single set of conservation equations can be derived for the whole do-
main (including the liquid, solid and mushy zones), with the mushy
zone treated as a porous medium. After that, multiphase models
[14–16] that couples multiple sets of conservation equations for dif-
ferent phases were developed. Nevertheless, the coupling of global
multiphase transport phenomena with microscopic solidification ki-
netics is extremely complex and requires large amount of computation
resources. As a consequence, the one-domain model based on the

volume averaging technique [10–12] or mixture theory [13] is still
fundamental and inevitable in practice.

The major advantage of FEM is the flexibility of mesh discretization,
and arbitrarily shaped domains can be easily approximated by un-
structured meshes with high accuracy. The disadvantage is that larger
computation amount and higher memory are required than other nu-
merical methods, such as the finite volume method. In the case of so-
lidification, more seriously, the efficiency is lower further due to an-
other range of reasons. Firstly, a coupled system of equations resulting
from conservations of energy, mass, momentum and solute must be
solved. Nonlinearities in these equations should be dealt with carefully,
and a specific solution procedure is needed to couple different transport
phenomena efficiently. In particular, the thermosolutal natural con-
vection is difficult to be simulated with a good accuracy due to the low
Prandtl number (∼0.01) and the great Lewis number (∼104) of liquid
metals [17]. Secondly, the numerical solution of incompressible flows is
inherently difficult, because the velocity and pressure are coupled by
the incompressibility constraint implicitly. It has been demonstrated
that a fractional step method or projection method [18–20] is efficient
for this problem, but their use in solidification remains very limited
[21–24]. Thirdly, for all fully coupled methods and most fractional step
methods, the approximation spaces for velocity and pressure must a
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priori satisfy a compatibility condition known as the inf-sup condition
or LBB condition [25]. In order to improve the computational effi-
ciency, it is of great significance to use various methods [26–32] to
circumvent the LBB restriction in the case of solidification.

Recently, contributions were called to verify and validate a
“minimal” solidification model and numerical codes for ingot solidifi-
cation of binary metallic alloys, and two reference cases for 2D co-
lumnar solidifications of Pb-18 wt%Sn and Sn-10 wt%Pb alloys were
proposed [17]. Some comparisons between the results obtained by
different computer codes have been made by Combeau et al. [33,34],
where most of those codes were based on the finite volume method, and
one finite element code provided by CEMEF (France) was included.
Therefore, more contributions based on FEM are needed for reference
solutions of this important problem.

The present work is a contribution dedicated to develop a simple
and efficient finite element formulation for the numerical simulation of
macrosegregation during solidification of metallic alloys. As a first step
for practical application, the “minimal” solidification model [17] for 2D
columnar solidification of binary alloys is considered. The numerical
principle based on FEM and fractional step method is first described in
detail. Then validation of the in-house code is given based on the ex-
periments performed by Hebditch and Hunt [35]. Finally, application in
the two reference cases proposed by Bellet et al. [17] is presented, and
the results and comparisons with those obtained by the FEM code of
CEMEF [33,34] are discussed.

2. Numerical principle

2.1. Mathematical model

The “minimal”model proposed by Bellet et al. [17] for solidification
of binary alloys is implemented in present work. It assumes that the
liquid flow is laminar and Newtonian, that the solid phase is fixed and
non-deformable, and that the mushy zone is treated as a porous
medium with isotropic permeability defined by the Carman-Kozeny
relation [36]. In addition, local thermodynamic equilibrium holds at
the solid/liquid interface, with perfect solute diffusion in both solid and
liquid phases (lever rule). All properties in both phases are equal and
constant, except the density in the buoyancy term, which is determined
by the Boussinesq approximation. The conservation equations of mass,
momentum, energy and solute are written as follows:

Total mass conservation:

∇ =V· 0 (1)

where V is the average liquid velocity vector.
Momentum conservation for liquid phase:
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where p is the pressure, t the time, ρ the reference density, ρb the density
in the buoyancy term, gl the liquid fraction, μl the dynamic viscosity of
the liquid, K the permeability in the mushy zone, and g the gravity
vector.

Energy conservation:

∂
∂

+ ∇ −∇ ∇ =ρ H
t

ρc T λ TV· ·( ) 0p (3)

where H is the volume averaged specific enthalpy, T the temperature, λ
the average thermal conductivity, and cp the specific heat.

Solute conservation:

∂
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where w and wl are the average mass concentration and the average
mass concentration in liquid, respectively.

The supplementary relations are given by:

Permeability of the mushy zone:
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where λ2 is the secondary dendrite arm spacing.
Density in the buoyancy term:

= − − − −ρ ρ β T T β w w[1 ( ) ( )]b T ref w l ref (6)

where βT is the thermal expansion coefficient, βw the solutal expansion
coefficient, Tref the reference temperature, and wref the reference mass
concentration.

Volume averaged enthalpy:

= +H c T g Lp l (7)

where L is the latent heat of fusion.
Microsegregation model (lever rule):

=w k ws p l (8)

= +w g w g wl l s s (9)

+ =g g 1l s (10)

= +T T m wm l l (11)

where ws is the average mass concentration in solid, kp the partition
coefficient (< 1), gs the solid fraction, Tm the melt temperature of pure
solvent, and ml the liquidus slope (< 0).

2.2. Fractional step method

In order to circumvent the difficulty of solving a large system ob-
tained by mixed finite element methods, a fully implicit four-step
fractional method [28] originally used for Navier-Stokes equations is
extended to solve the thermosolutal convection which has a damping in
the mushy zone during solidification. Using this method, the coupled
system of conservation equations of mass and momentum is split into
several decoupled systems of much smaller size, which can be solved
easily with much less computational cost. The time derivative is dis-
cretized by a fully implicit Euler backward method. The terms of con-
vection, diffusion, pressure gradient, Darcy drag, and buoyancy are
integrated using the Crank-Nicolson scheme which has second-order
accuracy in time. The resulting time-discrete equations of the de-
coupled systems corresponding to Eqs. (1) and (2) are written as fol-
lows:
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where superscript n denotes the time level, and Δt the time step. The
liquid fraction gl, permeability K and density ρb are all evaluated at time
level n+ 1/2. As the permeability is highly nonlinear with the liquid
fraction and unable to be integrated accurately, the Darcy drag term is
included only in Eq. (12) to improve the computational efficiency. With
the pressure gradient term treated explicitly, an intermediate velocity ̂V
is first solved by Eq. (12), and substituted to Eq. (13) to calculate an-
other intermediate velocity ∗V . Then, the pressure is obtained by the
pressure Poisson equation Eq. (14) derived from the incompressibility
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