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A B S T R A C T

In this paper, we use the Topology Optimization of Binary Structures (TOBS) method recently developed by
Sivapuram and Picelli (2018) for microstructural optimization. This is the first work in topology optimization
addressing various non-volume microstructural constraints with discrete (0/1) design variables. The objective
and constraint functions are linearized at each iteration, and the obtained linear problem is solved through
Integer Linear Programming (ILP) using sensitivities computed from asymptotic homogenization. A periodic
filter is used to make the optimized solutions checkerboard-free and mesh-independent. Volume minimization
problems subject to elastic and thermal constraints are considered. The examples consider different sets of
constraints, including bulk and shear moduli, square/cubic symmetry, isotropy, thermal conductivity and a
combination of them in two and three dimensions. The non-volume constraints are treated explicitly, i.e.,
without the use of Lagrange multiplier/penalty as used in conventional gradient-based binary topology opti-
mization methods (Huang and Xie, 2010). The resulting microstructures are observed to be convergent in all the
examples presented and in agreement with the Hashin–Shtrikman bounds.

1. Introduction

Many naturally occurring materials exhibit outstanding mechanical
properties while being light-weight because of the presence of cellular
microstructures. Gibson et al. [3] analyzed the microstructures in wood,
palms and bamboo for their high-performing materials and also de-
scribed the fabrication of model materials inspired from these micro-
structures. The material property charts for natural materials with mi-
crostructures like cellulose, keratin, collagen, etc. are given in [4].
These charts identify the extreme properties of materials which suggest
the evolution of materials for specific modes of loading. Such materials
with remarkable tensile or flexural properties motivate us to design
similar or superior materials artificially using numerical algorithms.

Topology optimization is a tool for designing a structure with op-
timized distribution of material so as to maximize the structure’s per-
formance, subject to some constraints. Topology optimization has been
used to solve various problems including compliant mechanisms’ design
[5], design of pressure-load bearing structures [6,7], acoustic design
[8,9], etc. The material microstructures can also be systematically de-
signed using topology optimization to create light-weight materials
with enhanced properties.

The seminal paper by Bendsøe and Kikuchi [10] used the homo-
genization method through sizing optimization of material micro-
structures at various locations in the structure so as to optimize its to-
pology. As a density-baed approach, the Solid Isotropic Material with
Penalization (SIMP) method uses continuous ([0, 1]) density design
variables and material interpolation using penalization to optimize for
continuum structures [11,12]. Sigmund [13] used SIMP and an inverse
homogenization approach to design 2D material microstructures with
prescribed constitutive tensors. The SIMP method has also been used in
the design of microstructures with optimized thermal expansion and
piezoelectric coefficients [14,15] and in the design for maximum fluid
permeability [16]. The SIMP method features the presence of gray re-
gions (intermediate densities) in the optimized solution because of the
continuous design variables. The gray regions are difficult to be mini-
mized even by increasing penalty, which poses a challenge for specific
problems, e.g., in thermoelastic design [17]. The final solution can be
driven to a 0/1 design by using filtering or projection schemes [18]. The
projected structures, however, might potentially be in the infeasible
region of constraint space. The existence of intermediate densities
during optimization motivates binary methods to be created for a series
of applications.
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Some methods like the level-set topology optimization use an im-
plicit description of the structural boundary using a level-set function,
which is iteratively updated by solving a Hamilton–Jacobi (HJ) equa-
tion so as to improve the performance of the structure [19,20]. The
exact location of the boundary is approximated using interpolation of
the level-set function values defined over a grid. Using the level-set
method, [21] presented the Pareto fronts that estimate the upper bound
of bulk modulus and fluid permeability cross-property space. Structures
with multiple materials have been designed using a parametric level-set
topology optimization in [22]. Wang et al. [23] used parametrized
level-set method and numerical homogenization to design metamater-
ials where the objective function is a measure of mismatch between the
optimized and target constitutive tensors. Challis et al. [24] presented a
method to design isotropic 3D microstructures optimized for a weighted
combination of effective elastic and thermal properties using level-set
method. They used two phases of materials, the stiff, insulating phase
and the compliant, conductive phase. A review of level-set methods and
the challenges faced by them are described in [25].

Another major class of topology optimization methods uses a dis-
crete 0/1 set of design variables. The most established discrete topology
optimization method is the Bidirectional Evolutionary Structural
Optimization (BESO) [26]. The method uses binary design variables in
the structure which are updated using rules based on the gradients of
objective function towards satisfying a required volume constraint. Any
non-volume constraint is dealt with using Lagrange multipliers so as to
convert the original problem into an optimization problem with only
volume constraint. Huang and Xie [2] show the usage of Lagrange
multipliers to deal with the displacement constraint. In microstructural
optimization, Xia and Breitkopf [27] developed a multiscale framework
for concurrent design of material microstructures and macrostructure
using FE2 scheme, using the BESO method at both the micro and macro
scales. In [28,29], BESO is used to obtain optimized isotropic micro-
structures where the isotropy constraint is again handled using La-
grange multipliers. The setting and updating of Lagrange multipliers is
not trivial, especially in case of multiple non-volume constraints. The
convergence of non-volume constraints is potentially affected when
enforcing them via Lagrange multipliers. In Sivapuram and Picelli [1],
we developed the TOBS (Topology Optimization of Binary Structures)
method using Integer Linear Programming (ILP). Since mathematical
programming is used to update the design variables, the non-volume
constraints can be dealt explicitly. The working of the method in the
presence of compliance and displacement constraints is demonstrated
in [1]. This paper extends the TOBS method to microstructural opti-
mization problems with multiple non-volume constraints.

The TOBS method is a discrete optimization method and con-
ceptually simple. The optimization problem is converted into an integer
linear program by linearization at each iteration using Taylor’s first
order approximation. An extra constraint is added to restrict dramatic
changes in the structure at each iteration, thus keeping in check the
truncation error due to linearization. The constraints are relaxed to
ensure a feasible solution at every iteration and ILP can be used to solve
the linear subproblem using branch-and-bound method. The design
variables are then updated to obtain the new (micro) structure. Since
we are using mathematical programming, the use of Lagrange multi-
pliers is not necessary. This gives the method an advantage over the
BESO method in dealing with non-volume constraints. Svanberg and
Werme [30] also use ILP for a hard-kill topology optimization without
the use of any filtering. However, they use hierarchical mesh refine-
ment to achieve the optimized solution, therefore, making the problem
mesh dependent. In this work, standard asymptotic homogenization is
used to compute the material properties and characteristic displace-
ments each iteration. The sensitivities are then computed and filtered
for mesh-independency and to avoid checkerboards. In this paper, some
volume-constrained problems from literature are solved to demonstrate
that TOBS produces similar or improved solutions. We also solve vo-
lume minimization of 2D and 3D microstructures with constraints on

bulk modulus, shear modulus, thermal conductivity and additional
constraints for achieving square/cubic symmetry, orthotropy and iso-
tropy. Several examples are presented to demonstrate the effectiveness
of the TOBS method in dealing with multiple non-volume constraints
for microstructures. Some of the problems solved consist of constraints
related to both thermal and elastic properties thereby designing mul-
tifunctional materials.

This paper is organized as follows. Section 2 describes the TOBS
method and the improvements of the technique from [1]. The standard
asymptotic homogenization to compute material properties is briefly
outlined in Section 3. Section 4 describes the objective and constraint
functions used in the paper and their sensitivities. The filtering of
sensitivities for microstructures is described in Section 5. Several 2D
and 3D examples for microstructure design are shown in Section 6, and
the results are discussed. Section 7 summarizes the work and presents
the key conclusions.

2. Topology Optimization of Binary Structures (TOBS)

The TOBS method involves linearization of the objective and con-
straint functions at each iteration, and the subproblems created are
solved using integer programming. The design variables of the opti-
mization are binary, 1 for solid and 0 for void finite elements in the
mesh of design domain. A generic topology optimization problem with
objective function f x( ), constraints ⩽g gx( )i i, where x are the design
variables is given by:
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where Nd is the number of design variables. Taylor’s first order ap-
proximation is used to create the linearized subproblem given by Eq.
(2).
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where gΔ i
k is the right hand side of the ith constraint at the kth iteration,

and xΔ k represents the change in design variables. At the end of each
iteration, the design variables are updated using Eq. (3).

= ++x x xΔk k k1 (3)

The truncation error involved in approximation of the functions is
O x(||Δ || )2

2 . In order to maintain the validity of this approximation, an
additional constraint is imposed on the change in design variables xΔ at
every iteration. The extra constraint is given by Eq. (4).

⩽ βNx||Δ ||k
d1 (4)

This equation implies that the number of flips between solid to void
and vice versa is constrained to be a fraction β of the total number of
flips possible, which is the number of design variables Nd. We used Eq.
(4) in place of the two constraints used in [1] for keeping a check on the
truncation error.

The gradient-based optimization requires an initial solution to start
with, which might lie in the infeasible space of optimization problem.
Thus, it can happen that the solution at the current iteration is in-
feasible, and far from being feasible. In such a case, it is difficult to
satisfy the linearized constraints in the next iteration because the
structure is allowed to have only small changes each iteration to keep
the truncation error low. To address this issue, the constraints are re-
laxed, i.e, the values of gΔ i

k are chosen such that the linearized problem
has a feasible solution. The relaxation for a constraint g at iteration k is
given in Eq. (5).
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