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A B S T R A C T

Altshuler and Aronov (AA) have shown that the electron-electron interaction in a weakly-disordered metal
suppresses the single-particle density of states (DOS) in the vicinity of the Fermi level (EF). According to the AA
theory the suppressed DOS exhibits the energy dependence ∝ −E EF valid for |E− EF| smaller than a certain
correlation energy Uco. Recent experiments have shown that at energies larger than Uco the DOS exhibits a states-
conserving dependence on energy, namely, the states removed from near the Fermi level are found at energies
above Uco in the energy range of about 3Uco. In this work the AA effect is studied beyond the low energy limit
theoretically. We consider the AA model in which the electrons interact via the statically screened Coulomb
interaction and the modification of the DOS is due to the exchange part of the electron self-energy. We derive the
states-conserving DOS heuristically. Namely, we show that the self-energy consists of a diverging part (which we
skip on physical grounds) and of the small part of the order of the pair Coulomb energy. This small part gives the
states-conserving DOS which is in qualitative accord with experimental observations at energies above Uco and
which reproduces the AA result at energies below Uco.

1. Introduction

Altshuler and Aronov (AA) have shown [1–3] that the electron-
electron (e-e) interaction in a weakly-disordered three-dimensional
(3D) metal suppresses the single-particle density of states (DOS) in the
vicinity of the Fermi level (EF). Specifically, the AA theory predicts for
the suppressed DOS the energy dependence ∝ −E EF which is valid
for |E− EF| ≲ Uco where Uco is a characteristic correlation energy. The
DOS ∝ −E EF at energies |E− EF| ≲ Uco was observed by tunneling
spectroscopy [4–14] and by photoemission spectroscopy [15]. Some
experiments [8–10,12,15] studied the DOS also for |E− EF| > Uco. In
particular, the aim of experiment [12] was to show that the DOS in
presence of the AA effect exhibits a states-conserving dependence on
energy. It has been found [12] that all states removed from near the
Fermi level by the AA effect are found at energies above Uco in the
energy range of 2–3 times Uco. However, the observed states-conserving
DOS [12] was not compared with theory, because the relevant theories
[1–3,16,17] studied the AA effect in the low energy limit. In this work
we study the AA effect beyond the low energy limit theoretically. We
consider the model [3, 17] in which the electrons interact via the sta-
tically screened Coulomb interaction and the modification of the DOS is
due to the Fock part of the self-energy. We derive the states-conserving

DOS which is in qualitative accord with experimental observations at
energies above Uco and which reproduces the AA theory at low energies.
We show that, besides the direct experimental study of the states-con-
serving DOS [12], such DOS was present (but not noticed) also in other
experiments [8–10].

In our model [3,17] electrons in the disordered metal interact via

the static finite-ranged potential → − ′
→

V r r( ). If V=0, the electrons in-
teract only with the random potential →V r( )d , produced by disorder. In
such case the electron energies Em and wave functions φm obey the
Schrodinger equation → = →Hφ r E φ r( ) ( )m m m , where
= − + →→H V r(ℏ /2 m)Δ ( )r d

2 . If we treat the e-e interaction within the
first order perturbation theory and consider only the Fock part of the
interaction, Em is modified to Ẽm as [17]

= +∼E E Σm m m
x (1)

where Σm
x is the Fock first-order self-energy correction:

∫∑= −
→

→⋅→Σ f
dq
π

V q φ e φ
(2 )

( ) .m
x

n
n m

iq r
n3

2

(2)

Here V (q) is the Fourier transform of → − ′
→

V r r( ), fn is the Fermi func-
tion, and ∑n is the sum over n with spin parallel to that of m. Equations
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(1) and (2) hold if ≪Σ Em
x

m.
Equations (1) and (2) describe a specific disordered sample. When

averaged over many disordered samples, they remain unchanged except
that Em and Σm

x are the mean values. Most important, the disorder-
averaged

→⋅→φ e φm
iq r

n
2 can be calculated explicitly. For a diffusing

electron [3,16,17]

=
+ −

→⋅→φ e φ
πρ E

Dq
Dq E E
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( )Ω

ℏ
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n m n

2 2

2 2 2 (3)

where D is the diffusion coefficient, Ω is the volume, and ρ(En) is the
DOS for a single spin orientation [ρ(En) is often replaced by ρ(EF) which
is justified for En close to EF]. If we average Ẽm, Em, and Σm

x over all
states m with energies Em= E, equation (1) can be rewritten as

= +∼E E E E( ) Σ ( ) ,x (4)

where

∫ ∫= − ′
→

+ − ′
E dE

dq
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In the last equation and in all following calculations we assume zero
temperature for simplicity.

Due to averaging over disorder the unperturbed DOS (per spin)
reads =ρ E m E π( ) ( /2) / ℏ0

3/2 2 3, as for the free electrons. The perturbed
DOS versus E, ≡∼dn dE ρ E/ ( ), can be expressed [3,16,17] from equation
(4) as

=
+

≃
+

ρ E ρ E ρ E( ) ( ) 1
1

( ) 1
1

.d E
dE

F d E
dE

0 Σ ( ) 0 Σ ( )x x

(6)

where the right hand side holds for ρ0(E)≃ ρ0(EF). Note that the per-
turbed DOS, ρ(E), is expressed as a function of E rather than of ∼E . This
approximation is valid within the first order perturbation theory
[3,16,17]

It is customary to change the integral ∫ ′dEE
0

F in equation (5) as

∫ ′
−∞ dEEF . This infinite band approximation is justified for weak interac-
tion. Then, substituting E by variable ɛ= E− EF, one can rewrite
equation (5) as [16]
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∞
ε dε d ε
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(7)

where [3,16,17]
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The AA effect was studied [3,16,17] for V (q) so small that
dΣx(ε)∕dε≪ 1. Then ρ(E)≃ ρ0(EF)[1− dΣx(E)∕dE], or

≃ −ρ ε ρ d ε dε( ) (0)[1 Σ ( )/ ].x
0 (9)

In the simplest model [3,16,17] with static screening

=
+∞

V q e
q k

( )
ɛ ( )

,
s
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where = ∞k e ρ E2 ( )/ɛs F
2

0 is the reciprocal screening length (the factor
of 2 is due to the spin degeneracy), and ɛ∞ is the high-frequency per-
mittivity of the metal.

From equations (8) and (9) one obtains the result of Altshuler and
Aronov [1,17]

= +ρ E ρ E
π
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( ) ( ) 1
4 2 (ℏ )

,F 2

1/2

3/2 (11)

where ρ(EF) is the DOS at the Fermi level and the second term on the
right hand side is the AA interaction correction. In Refs. [1,17] the
integral in equation (8) was calculated assuming V (q)≃ V (0). For V
(q)= V (0) the integral diverges in the upper limit, therefore, the upper
limit was restricted to =q ε D/ℏmax . Since V (q)≃ V (0) only for q≲ ks,

the obtained result [equation (11)] holds only for ≲ε Dkℏ s
2. Within

this approach the term ρ(EF) remains undetermined, it is usually de-
termined experimentally [14,15].

In the following text we present an alternative derivation which is
not restricted to the low-energy limit. At low energies our derivation
will reproduce equation (11) and also determine explicitly the term
ρ(EF). However, our major goal is to go beyond the low energy limit and
to derive the DOS which conserves the states similarly as in the ex-
periment [12].

In Section 2 we show that the DOS given by equations 8–10 does not
conserve the states. In Section 3. we identify why this is so and present a
heuristic derivation of the states-conserving DOS. Comparison with
experiment is presented in Sections 3 and 4. Finally, in Section 5 we
interpret the AA effect with conservation of states in terms of coupling
between the interaction (10) and matrix element (3).

2. The states conservation problem

Fig. 1 shows schematically the typical experimental output [12]. At
energies below Uco the data show the AA singularity described by the
|ε|1∕2 law. All states repelled from the AA singularity are found at en-
ergies above Uco in the range of about 3Uco. This local conservation of
states should be distinguished from the conservation of states in
strongly correlated disordered systems where the states repelled by
interaction are transferred far away from the Fermi level [18]. In the
latter case one cannot use the approximation of the infinitely wide band
which on the contrary has no effect if conservation of states takes place
locally near the Fermi level. Whenever we speak about the conservation
of states, we have in mind the local conservation of states similar to that
in Fig. 1.

In accord with Fig. 1 and Ref. [12], the conservation of states for the
AA model reviewed in Section 1 reads

∫ − =
∞

dε ρ ε ρ[ ( ) (0)] 0 .
0 0 (12)

Inserting equation (9) into the conservation law (12) we find that the
conservation of states is fulfilled only if

∫ =
∞

dε d ε
dε

Σ ( ) 0 .
x

0 (13)

However, equation (13) is not fulfilled because dΣx(ε)∕dε is positive for
any ε [see equation (8)]. This means that the model of Section 1 does
not conserve the states.

Furthermore, integral ∫∞ dε d ε dεΣ ( )/x
0 not only fails to fulfill

equation (13) but even diverges in the upper limit (see the next sec-
tion). This means that also the self-energy (7) diverges which is another
problem, in addition to the states conservation problem. In principle,
the divergence could be eliminated by considering the energy band of
finite width, however, the self-energy would then depend on the band

Fig. 1. Experimental output (schematic) for DOS in a weakly disordered metal,
normalized as [ρ(ε)− ρ0(0)]∕ρ0(0). The correlation energy Uco, defined [12] by
equation ρ(ε)= ρ0(0), is marked by arrow. The states conservation means that

∫ ∫− = −∞dε ρ ρ ρ dε ρ ρ ρ( )/ ( )/Uco
Uco0 0 0 0 0, assuming that the conduction band

width is much larger than the states conservation region.
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