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A B S T R A C T

Using the notion of phase coherence length ζϕ, a quantum cellular automaton model for two-dimensional
electron gas (2DEG) is designed leading to a new type of disorder-driven electronic percolation transition. This
transition is shown to be accompanied by a metal-insulator transition, as well as a singularity in the electronic
compressibility. The cellular automaton model for transporting the electrons is developed in terms of the
temperature (T) and the disorder strength (Δ). At the transition line some power-law behaviors emerge with
critical exponents consistent with the Gaussian free field (GFF) and partly the percolation theory. Our model
yields the important features of the experimental observations, e.g. the singularity in the conductivity in a
critical density and also the universality (non-universality) of the metal-insulator transition (MIT) for the small
(large) disorders in 2DEG. A T −Δ phase diagram of the electron gas is drawn in which in addition to the
mentioned transition line, a zero-heat capacity line is also observed in which the system becomes unstable.

Many classical and quantum systems have the potential to be de-
scribed in terms of the percolation theory in some limits [1]. Despite its
very simple rules, this theory has successfully been applied to describe a
large variety of natural [1], social [2], and quantum [3,4] systems. The
description of insulating-non-insulating phase transitions in terms of
the percolation theory has been done in some systems, like quantum
Hall effect systems [3] and metal-insulator transition (MIT) in 2DEG
[4]. In the latter case, in an essentially classical scheme, it was claimed
that the disorder-induced valleys and mountains created by unscreened
coulomb potential at low densities [4] is responsible for the experi-
mentally observed MIT in 2DEG [5,6]. This approach due to its gen-
erality and simpleness sounds very promising in quantum systems. The
percolation theory, when is mixed by the cellular automaton models,
has proved to be very powerful in describing the natural systems [7].
The classical example is the sandpiles on the percolation lattices which
has some relations with the propagation of fluid in the reservoirs [8].
The easiest way to generalize this concept to the quantum systems is to
use the notion of phase-relaxation length ζϕ above which the electronic
transport is classical, i.e. the system can be meshed by means of ζϕ. A
cellular automaton model can therefore be designed for the transport of
electrons with spatial scales below and above ζϕ. Consider for example
a highly biased metal-oxide-semiconductor (MOS) junction with an
inversion layer in which a 2D electron gas is formed whose density is
controlled by the bias voltage [6]. In this system the metal and semi-
conductor have the role of electronic reservoirs from which the

electrons can be transferred to the inversion layer, i.e. 2DEG and vice
versa. The localization of electrons in such a system is roughly con-
trolled by ζϕ. In Fig. 1(left) this system has schematically been shown,
in which the 2DEG has been meshed by some cells (hexagons) of the
linear scale ζϕ. The aim of the present paper is to develop a cellular
automaton model with local transition rules based on the local chemical
potential. The electrons, when transmitted from the electronic re-
servoirs to the inversion layer, respect to some simple automaton rules
for traveling to the neighboring cells, resulting to a chain of in-plane
transmissions. By coloring the cells in which a transmission has oc-
curred, a colored area results. A spanning colored area means that some
electrons have traveled throughout the 2D sample and contributed to
the in-plane conductivity. This method, when compared with the other
percolation methods, e.g. two-component effective medium theory [4],
is proved to be very rich and powerful. Our main observation of the
paper, namely that in the vanishing inter-particle interaction, and in the
diffusive phase the system experiences a transition from the localized
states (in which the electrons cannot travel throughout the sample) to
the extended states (metallic states in the sense that the conductivity is
a decreasing function of the temperature), shows that the system can
have a MIT which is not interaction-driven (like Wigner-Mott systems
[9–11]), nor Anderson-localization type [12–14] (stating that the in
plane magnetic field that destroys the metallic phase), instead a finite
temperature disorder-driven percolation transition (for 2D MIT see Ref.
[15]). We name this behavior as semi-classical localization of electrons.
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The Fig. 1(right) shows our final T −Δ phase diagram. The full (blue)
line shows the second order percolation transition above (under) which
the system is localized (extended). The compressibility diverges at this
line, signaling the instability of the system. The electron density as well
as the chemical potential show also some singular behaviors at this line.
In the extended phase, the conductivity has a decreasing behavior in
terms of temperature which is the characteristics of the metallic phase.
The dashed (red) line shows the zero-heat capacity (Cv=0) line below
which Cv < 0 in which the electron gas is unstable. The vertical full
line shows that the system shows a discontinuity from Δ=0 to positive
Δ values.

1. The method

When a quantum system is in the diffusive regime, the dynamics of
electrons is divided to two scales relative to the phase relaxation length

≡ζ Dτϕ ϕ in which D is the diffusion coefficient and τϕ is the phase
relaxation time associated with inelastic or spin-flip scattering up to
which the electrons retain their coherence, i.e. the quantum phase is
maintained up to t= τϕ. Therefore the spatial dynamics of the electrons
is divided to two spatial (r) scales: l≪ r≪ ζϕ and r≫ ζϕ in which l is the
mean free path due to the electron-electron or the electron-phonon
interactions. For r≫ ζϕ the electron dynamics is semi-classical, since the
quantum coherence becomes negligible and since the dynamics of a
random phase particle is classical, one can use classical Boltzmann
transport equation [17]. The existence of such a temperature dependent
spatial scale is crucial in e.g. self-averaging of quantum systems [16]. In
this approach one subdivides the system into many cells with the linear
sizes ΔL ∼ ζϕ(T). The electron gas inside the cells should be treated
quantum mechanically, whereas the transport between the cells is semi-
classical. The cells should be considered most symmetric, i.e. circles in
2DEG which is estimated by hexagons in the present work. The meshed
space has schematically drawn in Fig. 1 in contact with some electronic
reservoirs (metal and semiconductor) from which the electrons can
cross out. The electrons can enter the 2DEG from the metal by tun-
neling, or from the semiconductor directly which makes the neigh-
boring cells excited and leads to electron transport to the other cells.
The electrons which have traveled throughout the 2D sample, con-
tribute to the in-plane conductivity. The local rules for these electron
transmissions are according to the local free energy and the chemical
potential of the cells. Actually one can think of this mapping (onto the
classical percolation problem) as subdividing the main system to many
(hexagonal) boxes with periodic boundary conditions, between which
the electrons can pass. If one let the local chemical potentials of each of
these boxes are equal and the electronic transitions between the boxes
are quantum mechanical, then the effect of this meshing becomes

trivial. We have assumed that the local chemical potentials are not the
same (due to presence of charged disorder) and also the transition be-
tween the boxes is classical which are reasonable.

The energy of the electron gas and the chemical potential inside
each cell is calculated by means of the Thomas-Fermi-Dirac (TFD) ap-
proach. The average energy of the ith cell, inside which the charge in
supposed to be uniform, is ⟨ ⟩ = + +E K T V T E T( , Ñ ) ( , Ñ ) ( , Ñ )i i ee i iimp in
which the terms are finite temperature averages of the kinetic, the
electron-electron interaction and the impurity energies respectively and
Ñi is the number of electrons in the cell. In the weak interaction limit
(i.e. in which the dominant term is the kinetic energy) K(T, Ñi) is readily
shown to be − − eLi (1 )mAπ
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n is the poly logarithmic function. In this paper we

consider free particles, i.e. Vee ≡ 0 by which we show that the existence
of the localized-extended phase transition in our system is not inter-
action-driven. The same arguments also hold for the impurity energy
whose classical form is = −E Arcsinh(1) ÑZe
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in which Ze is the

electric charge of the impurity in the cell and the potential range and its
corresponding integrals are supposed to be limited to the cell. The sum
of the above mentioned contributions yields the total energy as
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B and L is the total number of cells.

This is a simplified theory which has the ability to show the non-trivial
main features of the experiments, to be described in the following
section.

The chemical potential of a cell (μi= ∂Ai∕∂N∣V,T in which Ai is the
Helmholtz free energy of the ith cell) as the main building block of the
transition rules of electrons between cells is obtained using the relation
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. By considering the fact that μ(T → 0) → 0

and ζϕ(T)= aT−1∕2 for two dimensional electron gas [17] (a is a pro-
portionality constant), the solution is obtained to be
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stands for the ith cell. The effect of randomness of Zi's, which captures
the on-site (diagonal) disorder is investigated. Zi's are supposed to be
random noise with a uniform probability measure

= + − − −P Z Z Z Z Z( ) Θ(Δ/2 ( ))Θ(Δ/2 ( ))1
Δ 0 0 in which Δ shows the

disorder strength, = ⟨ ⟩Z Z0 is the average of Z and Θ is the step function
and ⟨ ⟩ =Z Z δi j ij in which ⟨ ⟩ shows the ensemble average and δ is the
Kronecker delta. The present model is a toy model which highlights the
semi-classical aspects of the electronic transport in the absence of e-e
interaction. In fact, considering the charged disorder for this free-
electronic system is sufficient to represent a new-type disorder-driven

Fig. 1. (Left) A schematic representation of a MOS system with a 2DEG in the inversion layer. The 2DEG has been mashed by many artificial hexagons of the linear
size ζϕ. Shadowed area is composed of sites from which the electrons have passed. A spanning shadowed area contributes to the conductivity. (b) The total
(schematic) T−Δ phase diagram with zero-κ (compressibility) (blue full line) and zero-cv (red broken line). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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