Accepted Manuscript

Efficient sensitization of Sm²⁺ emission by Eu²⁺ under UV excitation in Al₂O₃ host formed by plasma electrolytic oxidation

Stevan Stojadinović, Rastko Vasilić

PII: S0167-577X(18)31445-9

DOI: https://doi.org/10.1016/j.matlet.2018.09.069

Reference: MLBLUE 24937

To appear in: Materials Letters

Received Date: 11 July 2018
Revised Date: 8 September 2018
Accepted Date: 13 September 2018

Please cite this article as: S. Stojadinović, R. Vasilić, Efficient sensitization of Sm²⁺ emission by Eu²⁺ under UV excitation in Al₂O₃ host formed by plasma electrolytic oxidation, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.09.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Efficient sensitization of Sm^{2+} emission by Eu^{2+} under UV excitation in Al_2O_3 host formed by plasma electrolytic oxidation

Stevan Stojadinović*, Rastko Vasilić

University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade, Serbia

*Corresponding author. Tel: + 381-11-7158161; Fax: + 381-11-3282619

E-mail address: sstevan@ff.bg.ac.rs (Stevan Stojadinović)

Abstract

 Al_2O_3 coatings doped with Sm^{2+} and Eu^{2+} ions are synthesized using plasma electrolytic oxidation (PEO) process. Photoluminescence (PL) spectra of formed coatings excited by 260 nm are composed of broad PL bands associated with Eu^{2+} ions in Al_2O_3 host with a maximum at around 405 nm and sharp bands in red region corresponding to ${}^5D_0 \rightarrow {}^7F_J$ (J=0,1,2) transitions of Sm^{2+} ions. Comparison of the emission PL spectra of Sm^{2+} , Eu^{2+} and Sm^{2+}/Eu^{2+} doped Al_2O_3 shows that the emission PL intensity of Sm^{2+} ions in Al_2O_3 host is about one order of magnitude lower than that of Sm^{2+}/Eu^{2+} doped Al_2O_3 indicating that Eu^{2+} is a very efficient sensitizer for Sm^{2+} PL enhancement. It is also evident that an addition of Sm^{2+} to Eu^{2+} doped Al_2O_3 coatings causes a decrease of the Eu^{2+} emission, indicating that non-radiative energy transfer takes place from Eu^{2+} ions to Sm^{2+} ions.

Keywords: Photoluminescence, Plasma electrolytic oxidation; Sm²⁺; Eu²⁺; Energy transfer.

1. Introduction

It is well known that divalent europium ions (Eu²⁺) have been widely used as activators in host materials, which after activation show strong broad excitation and emission

Download English Version:

https://daneshyari.com/en/article/10156032

Download Persian Version:

https://daneshyari.com/article/10156032

<u>Daneshyari.com</u>