Accepted Manuscript

Microstructure Evolution Effect on High-temperature Thermal Conductivity of LDPE/BNNS Investigated by In-situ SAXS

Jia-long Li, Jing-hua Yin, Tianyi Ji, Yu Feng, Yuan-yuan Liu, He Zhao, Yanpeng Li, Cong-cong Zhu, Dong Yue, Bo Su, Xiao-xu Liu

PII:	S0167-577X(18)31436-8
DOI:	https://doi.org/10.1016/j.matlet.2018.09.061
Reference:	MLBLUE 24929
To appear in:	Materials Letters
Received Date:	4 May 2018
Revised Date:	25 August 2018
Accepted Date:	11 September 2018

Please cite this article as: J-l. Li, J-h. Yin, T. Ji, Y. Feng, Y-y. Liu, H. Zhao, Y-p. Li, C-c. Zhu, D. Yue, B. Su, Xx. Liu, Microstructure Evolution Effect on High-temperature Thermal Conductivity of LDPE/BNNS Investigated by In-situ SAXS, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.09.061

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure Evolution Effect on High-temperature Thermal Conductivity of LDPE/BNNS

Investigated by In-situ SAXS

Jia-long Li^{1,2}, Jing-hua Yin^{1,2,*}, Tianyi Ji³, Yu Feng², Yuan-yuan Liu^{1,2}, He Zhao^{1,2}, Yan-peng Li³, Cong-cong

Zhu^{1,2}, Dong Yue³, Bo Su², Xiao-xu Liu^{3**}

¹School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080,

China

²Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of

Science and Technology

³Heilongjiang University of Science and Technology, Harbin 150040, China

Abstract

The low-density polyethylene (LDPE) and its composites incorporated boron nitride nanosheets (BNNS) (\leq 5 wt%) were fabricated and their thermal conductivities (*K*) as a function of temperature (20-80 °C) were measured. The *K* of the composite filled with 5 wt% BNNS increased 22 % at room temperature and 48 % at a high-temperature (below melting point) compared with pure LDPE. In order to reveal the enhancement mechanism for the high-temperature *K* of the composites, the microstructure evolution of the samples with temperature increasing was investigated by in-situ Small Angle X-ray Scattering (SAXS). The results show that the structural stability with temperature increasing and the lower interfacial thermal resistance are favorable for high-temperature *K* of the composites. This work provides a new recognition for the effect of microstructure evolution on high-temperature *K* of LDPE-based composites. It is hoped that the research will be instructive for enhancing *K* of LDPE-based composites by low-content doping and making them well-suited for the high-temperature practical applications.

Download English Version:

https://daneshyari.com/en/article/10156048

Download Persian Version:

https://daneshyari.com/article/10156048

Daneshyari.com