## Accepted Manuscript

*In Vitro* Cytotoxicity, MMP and ROS Activity of Green Synthesized Nickel Oxide Nanoparticles using Extract of Terminalia Chebula against MCF-7 Cells

Fatima Ibrahim, Muhammad Hammad Aziz, Mahvish Fatima, Fozia Shaheen, Syed Mansoor Ali, Qing Huang

PII: S0167-577X(18)31449-6

DOI: https://doi.org/10.1016/j.matlet.2018.09.075

Reference: MLBLUE 24943

To appear in: *Materials Letters* 

Received Date: 28 June 2018
Revised Date: 1 September 2018
Accepted Date: 14 September 2018



Please cite this article as: F. Ibrahim, M.H. Aziz, M. Fatima, F. Shaheen, S.M. Ali, Q. Huang, *In Vitro* Cytotoxicity, MMP and ROS Activity of Green Synthesized Nickel Oxide Nanoparticles using Extract of Terminalia Chebula against MCF-7 Cells, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.09.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

In Vitro Cytotoxicity, MMP and ROS Activity of Green Synthesized Nickel Oxide Nanoparticles using

Extract of Terminalia Chebula against MCF-7 Cells

Fatima Ibrahima, Muhammad Hammad Aziz<sup>b,\*</sup>, Mahvish Fatimaa, Fozia Shaheen<sup>c,d</sup>, Syed Mansoor Ali<sup>e</sup>, Oing

Huangf

<sup>a</sup> Department of Physics, University of Lahore, Lahore, 54000, Pakistan

<sup>b</sup> Department of Physics, COMSATS University Islamabad, Lahore campus, Lahore, 54000, Pakistan

<sup>c</sup> Government College (GC) University, 54000, Lahore, Pakistan;

d National synchrotron radiation laboratory, University of Science and Technology of China, China

e Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia

<sup>f</sup> Hefei Institute of Physical Science, Chinese Academy of Science, 230031, China

**Abstract** 

Nanotechnology has been offered the prospect for the development of novel nanomaterials with countless potential

applications in natural sciences and clinical pharmaceutical. This study described the analysis of green synthesized

nickel oxide nanoparticles (NPs) using the extract of Terminalia chebula. The Green synthesized NiO NPs were

characterized by Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared

spectroscopy (FTIR), energy dispersive X-rays Analysis (EDAX) and ultraviolet-visible spectroscopy (UV-Vis).

Green synthesized NiO NPs displayed the toxicity to breast cancerous cells in a dose-dependent way from 0-100

µg/mL showing noticeable cell viability, Reactive oxygen species (ROS) activity and liberating of mitochondrial

membrane potential (MMP). The statistical scrutiny was also done on the experimental outcomes to check the value

and precision of the effects, with p-values < 0.05 selected as significant. The planned approach deliberates the NiO

NPs as a function of phenolic extracts of T. chebula with vast potential for several biological and biomedical

applications.

**Keywords:** 

Cytotoxicity; Reactive Oxygen Species; Mitochondrial Membrane Potential; Green Synthesis

Introduction

Nanobiotechnology is the most recent and emerging interdisciplinary branch of nanotechnology and cell biology.

Nanotechnology, nanoparticles, and Nano-medicines are imperative segments for the investigation and therapeutic

applications in the treatment of cancer [1,2]. Metal oxide Nanoparticles are the always the basic structural chunks

## Download English Version:

## https://daneshyari.com/en/article/10156061

Download Persian Version:

https://daneshyari.com/article/10156061

<u>Daneshyari.com</u>