Accepted Manuscript

Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation

Camila Zequine, Sanket Bhoyate, Khamis Siam, Pawan K. Kahol, Nikolaos Kostoglou, Christian Mitterer, Steven J. Hinder, Mark A. Baker, Georgios Constantinides, Claus Rebholz, Gautam Gupta, Xianglin Li, Ram K. Gupta

PII: S0257-8972(18)31027-2

DOI: doi:10.1016/j.surfcoat.2018.09.045

Reference: SCT 23818

To appear in: Surface & Coatings Technology

Received date: 24 August 2018
Revised date: 15 September 2018
Accepted date: 17 September 2018

Please cite this article as: Camila Zequine, Sanket Bhoyate, Khamis Siam, Pawan K. Kahol, Nikolaos Kostoglou, Christian Mitterer, Steven J. Hinder, Mark A. Baker, Georgios Constantinides, Claus Rebholz, Gautam Gupta, Xianglin Li, Ram K. Gupta, Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation. Sct (2018), doi:10.1016/j.surfcoat.2018.09.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation

Camila Zequine¹, Sanket Bhoyate¹, Khamis Siam¹, Pawan K. Kahol², Nikolaos Kostoglou³, Christian Mitterer³, Steven J. Hinder⁴, Mark A. Baker⁴, Georgios Constantinides⁵, Claus Rebholz⁶, Gautam Gupta⁷, Xianglin Li⁸, Ram K. Gupta^{1*}

¹Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
²Department of Physics, Pittsburg State University, Pittsburg, KS 66762, USA
³Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700
Leoben, Austria.

⁴Department of Mechanical Engineering Sciences, University of Surrey, GU2 7XH Guildford, UK

⁵Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3036 Lemesos, Cyprus

⁶Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus

⁷Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA

⁸Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66046, USA

Abstract:

Significant efforts have been focused on the search of earth-abundant elements to solve growing energy issues and to provide bifunctional behavior for both hydrogen and oxygen evolution reaction. Mixed transition metals could provide promising synergistic electrochemical properties and serve as bi-catalyst for overall water splitting process. In this study, a needle grass array of nanostructured nickel cobalt sulfide (NiCo₂S₄) was synthesized using a hydrothermal process. The synthesized NiCo₂S₄ electrodes showed promising electrocatalytic activity with a low overpotential of 148 mV and 293 mV for hydrogen and oxygen evolution reactions, respectively. The electrolyzer cell consisting of two NiCo₂S₄ electrodes displayed excellent performance with high electrochemical stability and low overall cell potential of 1.61 V to achieve a current density of 10 mA/cm². Our study suggests that mixed transition metal chalcogenides such as NiCo₂S₄ could be used as efficient and stable electrocatalyst for overall water splitting process.

KEYWORDS: NiCo-OH, NiCo₂S₄, OER, HER, water electrolysis

^{*} Corresponding author. Tel.: +1 620 2354763; fax: +1 620 2354003 E-mail address: ramguptamsu@gmail.com (Ram K. Gupta)

Download English Version:

https://daneshyari.com/en/article/10156075

Download Persian Version:

https://daneshyari.com/article/10156075

<u>Daneshyari.com</u>