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A B S T R A C T

Reliable tracking of performance degradation in dynamical systems such as manufacturing machines or aircraft
engines and consequently, prediction of the remaining useful life (RUL) are one of the major challenges in
realizing smart manufacturing. Traditional machine learning algorithms are often constrained in adapting to the
complex and non-linear characteristics of manufacturing systems and processes. With the rapid development of
modern computational hardware, Deep Learning has emerged as a promising computational technique for dy-
namical system prediction due to its enhanced capability to characterize the system complexity, overcoming the
shortcomings of those traditional methods. In this paper, a new approach based on the Long Short-Term Memory
(LSTM) network, an architecture that is specialized in discovering the underlying patterns embedded in time
series, is proposed to track the system degradation and consequently, to predict the RUL. The objectives of this
paper are: 1) translating the raw sensor data to an interpretable health index with the aim of better describing
the system health condition; and 2) tracking the historical system degradation for accurate prediction of its
future health condition. Evaluation using NASA’s C-MAPSS dataset verifies the effectiveness of the proposed
method. Compared with other machine learning techniques, LSTM turns out to be more powerful and accurate in
revealing degradation patterns, enabled by its time-dependent structure in nature.

1. Introduction

With the advancement in technology, the complexity of the ma-
chinery and system involved in today’s modern manufacturing has dra-
matically increased over the years. To meet the demanding requirement
for productivity, operational reliability and personnel safety, it is essential
to have an intelligent management strategy that coordinates the sche-
duling and resources in a pro-active way to ensure the highest level of
production while minimizing the maintenance cost [1]. Prognostics, de-
fined as “an estimation of time to failure and risks of one or more existing
or future failure modes” by the International Organization for Standar-
dization [2], estimates the system performance degradation based on real-
time analysis of its current health state, enabling condition-based in-
ference of manufacturing system health status, and providing scientific
basis for the prediction of its future physical behavior. It is playing the
central role in today’s manufacturing industry [3].

Over the years, the discipline of prognostics has evolved into an
active research field. Recent developments in manufacturing prog-
nostics have mainly been focused on two approaches: the Bayesian and
the machine learning approach [1]. The Bayesian approach char-
acterizes performance degradation of the manufacturing system as
probability distribution and predicts its future physical behavior

through the recursive steps of state prediction and update, given new
sensor measurements [4,5]. Kalman Filter (KF) and Particle Filter (PF)
are two main research areas in this category. As an example, a
Switching Kalman Filter (SKF) is developed to infer the underlying
gearbox bearing degradation process by applying the most probable
filter [6]. PF is applied for tool life prediction and a novel adaptive
resampling strategy is proposed for improved prediction accuracy [7].
PF is also integrated with total variation filter for better adaptation to
the transient fault in heat exchanger performance tracking [8]. The
machine learning approach establishes the predictive models by ana-
lyzing the related sensing data and numerically associating the dis-
covered patterns to a specific learning task. For example, an auto-
regressive integrated moving average-based (ARIMA) approach is
developed to trend the vibration characteristic in rotating machinery
[9]. The Quadratic Programming (QP) is also proposed to refine the
fitting curve to the noisy sensing data for improved prediction accuracy
[10]. Furthermore, Random Forest (RF) regression is explored to pre-
dict tool wear in milling operations to mitigate overfitting problems
[11]. The methods with hybrid nature, which is based on the fusion of
model-based and data-driven information, have also been reported. In
[12], Dempster Shafer regression has been investigated for bearing
prognosis by fusing the damage estimates from a physical fault
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propagation model, derived based on first principles which takes into
account the factors such as damage mechanics, bearing geometry, lu-
brication status and material properties, and a data-driven model from
the empirical fit of experimental data. The authors reported a more
accurate and robust bearing damage prognostic result. In their follow-
up work [13], the authors incorporated an Adaptive Neuro Fuzzy In-
ference System (ANFIS) for health assessment based on the data from
vibration and debris monitoring. Kernel regression was used to fuse
different damage estimates. Results from the experimental tests were
found to be in close agreement with the prognostic estimates. In [14],
the effectiveness of using features from the vibration data such as
kurtosis to calibrate the helicopter intermediate gearbox pinion gear
prognosis model has been confirmed, which has led to reduced un-
certainties in gear remaining useful life estimation.

With the rapid development of modern computational resources for
improved computational efficiency, deep learning has become one of
the emerging research areas in prognostics and has attracted con-
siderable attention recently due to its enhanced capability in complex
system modeling [15]. Inspired by the biological brain architecture,
deep learning refers to the supervised/unsupervised machine learning
technique that automatically learns hierarchical patterns in deep
structures [16]. Four major deep architectures exist [17]: Auto-encoder
is a simple neural network capable of learning efficient representations
of the input data in an unsupervised manner and is often used in net-
work pre-training. The Deep Belief Network (DBN) is a feed-forward
neural network with multiple hidden layers, capable of revealing deep
data patterns. It consists of a stack of Restricted Boltzmann Machine
(RBM) and a supervised perceptron [18]. Convolutional Neural Network
(CNN) emerged from the research of human brain cortex. It is devel-
oped to extract abstract features by sequential operations of convolu-
tion and pooling [19]. The Recurrent Neural Network (RNN) is a deep
architecture that retains the recent memories of input patterns. Its
variant, the Long Short-Term Memory (LSTM) network further ad-
dresses the problem of capturing the long-term memory [20,21].

Recently, a growing number of deep learning research has been
reported in manufacturing industry. An auto-encoder based prognostic
method has been proposed to precisely identify the bearing degradation
starting point [22], and the stacked denoising auto-encoder (SDA) is
investigated for bearing fault identification [23]. In the category of
DBN, for example, a DBN-based method is developed for material re-
moval rate prediction in polishing [24]. In another study, a new reg-
ularization term is proposed for RBM to predict machine RUL [25]. As
for CNN, it is constructed for fault inference in semiconductor manu-
facturing process [26], and used to learning features from time-fre-
quency spectra directly for automatic fault related pattern recognition
[27]. In addition, LSTM has been applied for predicting tool wear [28],
fuel cell voltage output [29], lithium-ion battery cell capacity [30] and
bearing health state [31].

Inspired by these prior research, this paper presents a bi-directional
LSTM-based approach for characterizing system degradation behavior
and subsequently predicting remaining useful life (RUL). The long-term
dependency characteristic embedded in the LSTM structure is envi-
sioned to capture inter-relationship of the time series data measured
from the monitored system, leading to better prediction of its future
behavior. Different from the reported research that only utilizes the
LSTM in a forward manner, in the bi-directional network, each se-
quence is presented forwards and backwards in two separate LSTMs,
allowing access complete information before and after each time step in
each sequence. Furthermore, the reverse path LSTM further smooths
the data and mitigates the noise impact.

The remainder of the paper is organized as follows. Section 2 out-
lines the concept of the proposed method for system health prognostics.
Section 3 illustrates a case study using the NASA’s C-MAPSS dataset to
validate the effectiveness of the proposed method, followed by the data
analysis and discussion in Section 4. Finally, the conclusions are drawn
in Section 5.

2. Proposed prognostic method based on LSTM

In this section, a bi-directional LSTM is proposed for system per-
formance degradation tracking and RUL prediction. First, the system
degradation tracking and RUL prediction are mathematically for-
mulated, followed by the theoretical background of the RNN and LSTM.
Finally, the structure and training algorithm of the bi-directional LSTM
network are presented.

2.1. Problem formulation

Given sensing data collected from n time steps
= …x x xX [ , , , ]n(1) (2) ( ) and the corresponding underlying system states
= …Y y y y[ , , , ]n(1) (2) ( ) , the system performance tracking is to find out

the variation pattern associated with Y over time through exploring the
variation of sensing data. Mathematically, it can be defined as:

= … ⇒ = …− − − −x x x xf y g y y y[ , , , ] [ , , , ]n n n n n n( ) ( 1) ( 2) (1) ( ) ( 1) ( 2) (1) (1)

Eq. (1) reveals: 1) current system performance relies on its pre-
ceding performance and 2) system performance evolution pattern is
revealed by the sensing data variation. System performance can be
described by physically defined parameters or artificially defined health
index, denoted by system state Y in this paper. Then the tracking
analysis of historical sensing data through either Bayesian inference or
machine learning techniques is to find the two system evolution func-
tions f and g, and subsequently, the future system performance can be
predicted via the estimated function g:

′ = …′
+

′
+

′
+Y y y y[ , , , ]n n n( 1) ( 2) ( 3) (2)

= …′
+ −y g y y y[ , , , ]n n n( 1) ( ) ( 1) (2) (3)

It should be noted the predicted system states are labeled as ′Y to
differentiate from the real values Y . Given a predefined failure
threshold ythreshold, the RUL can be predicted as the first passage time
when the future system state passes the failure threshold:

= ≤+
′RUL k y yinf{ : }predict n k threshold( ) (4)

The main challenge in the system tracking process lies in capturing
the non-linearity associated with the system variation and data un-
certainty (e.g. due to environmental disturbance and sensor failure). To
handle with the non-linearity, a deep learning-based system modeling
technique is presented in this study. Specifically, a Long Short-Term
Memory (LSTM) structure is investigated, as it is powerful in dis-
covering the variation pattern underlying a time series. To deal with the
data uncertainty, a bi-directional LSTM network is proposed, in which
information flow through the LSTM cells forwards for prediction and
backwards for ruling out the disturbance and smoothing the prediction.

2.2. Recurrent neural network and LSTM

Recurrent neural network (RNN) is composed of a series of recurrent
neurons, as shown in Fig. 1 [17]. The subscript in the parenthesis in-
dicates time step for the recurrent neuron. Different from the standard
neuron, the output from a recurrent neuron is connected to the next

Fig. 1. Recurrent nature of RNN as each neuron output is dependent on the
corresponding input as well as the output from the previous step.
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