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a  b  s  t  r  a  c  t

A  modern  aircraft  may  require  on  the  order  of  thousands  of  custom  shims  to  fill gaps  between  structural
components  in  the airframe  that  arise  due  to  manufacturing  tolerances  adding  up across  large  structures.
These  shims,  whether  liquid  or  solid,  are  necessary  to  eliminate  gaps,  maintain  structural  performance,
and  minimize  pull-down  forces  required  to bring  the  aircraft  into  engineering  nominal  configuration
for  peak  aerodynamic  efficiency.  Currently,  gap  filling  is a time-consuming  process,  involving  either
expensive  by-hand  inspection  or computations  on vast  quantities  of  measurement  data  from  increasingly
sophisticated  metrology  equipment.  In  either  case,  this  amounts  to  significant  delays  in  production,  with
much  of  the  time  being  spent  in  the  critical  path  of the aircraft  assembly.

In this  work,  we  present  an alternative  strategy  for predictive  shimming,  based  on  machine  learning
and  sparse  sensing  to first  learn  gap  distributions  from  historical  data, and  then  design  optimized  sparse
sensing  strategies  to streamline  the  collection  and processing  of  data.  This  new approach  is based  on
the  assumption  that  patterns  exist  in  shim  distributions  across  aircraft,  and  that  these  patterns  may  be
mined  and  used  to reduce  the burden  of data  collection  and  processing  in future  aircraft.  Specifically,
robust  principal  component  analysis  is  used  to extract  low-dimensional  patterns  in  the  gap  measure-
ments  while  rejecting  outliers.  Next,  optimized  sparse  sensors  are  obtained  that  are  most  informative
about  the  dimensions  of a new  aircraft  in  these  low-dimensional  principal  components.  We demonstrate
the  success  of  the  proposed  approach,  known  within  Boeing  as PIXel  Identification  Despite  Uncertainty
in  Sensor  Technology  (PIXI-DUST),  on historical  production  data  from  54 representative  Boeing  commer-
cial  aircraft.  Our  algorithm  successfully  predicts  99%  of  the shim  gaps  within  the  desired  measurement
tolerance  using  around  3% of the  laser  scan points  that  are  typically  required;  all  results  are  rigorously
cross-validated.

© 2018  Published  by  Elsevier  Ltd on behalf  of The  Society  of  Manufacturing  Engineers.

1. Introduction

Advanced manufacturing is increasingly becoming a data rich
endeavor, with big data analytics addressing critical challenges in
high-tolerance assembly [43], operation planning [33], quality con-
trol [42] and supply chains [27]. The broad applicability of data
science in manufacturing is reviewed in [23,29,28,17]. Machine
learning is a particularly promising tool for extracting actionable
patterns in vast quantities of high-dimensional data that are diffi-
cult to visualize and/or interpret. Examples of machine learning in
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manufacturing systems abound, for example using topological data
analysis [21], deep learning [47], and genetic algorithms to evaluate
form tolerances [49]. Modern aircraft assembly is at the forefront of
integrating big data into manufacturing, with advances in metrol-
ogy accelerating aircraft manufacturing processes in recent years
[46,25,44,45,39,43,36], for example in large composite structures
[46], in fuselage skin panels [32], and in the wing box [12].

Predictive shimming. Aircraft are built to exceedingly high
tolerances, with components sourced from around the globe.
Even when parts are manufactured to specification, there may
be significant gaps between structural components upon assem-
bly. One of the most time-consuming and expensive efforts in
part-to-part assembly is the shimming required to bring an air-
craft into the engineering nominal shape. Historically, parts have
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been dry-fit, gaps measured manually, and custom shims manu-
factured and inserted, often involving disassembly and reassembly.
Recent advancements in 3-D scanning have enabled their use for
surface measurement prior to assembly, known as predictive shim-
ming [25,46,44,12,45,43]. There are several patents and papers
describing methods of high-tolerance measurement and manu-
facturing required for predictive shimming [37,38,12,4,52,51,5,1].
While some cost-effective devices may  not provide the fidelity
required, higher-fidelity metrology and scanning devices result in
overwhelming amounts of data, shifting the burden from time-
consuming manual shimming to time-consuming computational
processing for predictive shimming. This amounts to significant
delays in production, with much of the time being spent in the crit-
ical path of assembly. Reducing the burden of data collection and
processing, and ultimately reducing delays for optimized aircraft
assembly, could have significant financial implications.

Sparse optimization in applications. Digital measurement
devices are inherently noisy. Statistical machine learning can be
used to determine when – and where – higher fidelity is required.
Additionally, part deformation can occur from measurement to
assembly (due to external forces, climate, etc.). While not cov-
ered in this paper, machine learning can also be used to augment
analysis to predict deformation. Several groups have used dimen-
sionality reduction, such as principal component analysis (PCA)
to model deformation in geometric surfaces for improved fitting
[7,10,56,31]. In the automotive industry, PCA was used in combi-
nation with sparse sensing to identify key measurement locations
for the characterization of compliant part assembly [7,10]. Such
dimensionality reduction methods have also been compared with
sparsity promoting techniques for outlier rejection and minimal
description of surfaces [56]. However, this work is the first to com-
bine RPCA with a scalable greedy sparse sensor optimization for
robust predictive shimming in the aerospace industry.

Contributions of this work. In this work, we present an alter-
native approach to predictive shimming based on machine learning
and sparse sensing. Instead of measuring each component of a
new aircraft in isolation, we leverage historical production data
to learn patterns in the shim gap distributions. In particular, the
robust principal component analysis (RPCA) [8] provides an esti-
mate of the dominant principal components that is robust to outlier
measurements. Robust statistical methods are critically important
for evaluating real-world data, as advocated by John W.  Tukey
in the earliest days of data science [24,13]. RPCA is based on the
computationally efficient singular value decomposition (SVD) [20],
and yields the most correlated spatial structures in the aircraft
measurements, identifying areas of high variance across different
aircraft. Next, based on the robust principal components obtained
from historical data, we design a small subset of key spatial mea-
surement locations that best inform the shim gap distribution of a
new aircraft. Our procedure, known within Boeing as PIXel Iden-
tification Despite Uncertainty in Sensor Technology (PIXI-DUST),
is based on recent advances in convex optimization for sensor
placement [6,34,35]. We  demonstrate the success of PIXI-DUST
on historical production data from 54 Boeing aircraft, predicting
99% of the shim gaps within the desired measurement tolerance
using approximately 3% of the available laser scan data. Specific
contributions of this work include:

• Machine learning, dimensionality reduction and optimization
are used to accelerate high-fidelity, measurement driven aircraft
assembly.

• Our novel method extracts features and optimizes gap measure-
ment locations to predict shim gaps in aircraft assembly.

• The proposed algorithm is demonstrated on historic Boeing air-
craft production data.

• 99% of shim gaps are predicted within the desired measurement
tolerance using 3% of the original laser scan points.

2. Mathematical preliminaries

The results in this work combine robust dimensionality reduc-
tion and sparse sensor optimization algorithms to dramatically
reduce the number of measurements required to shim a modern
aircraft. This section provides a foundation for the methods that
will be synthesized and applied throughout the paper.

2.1. Robust principal component analysis

Least-squares regression is highly susceptible to outliers and
corrupted data. Principal component analysis (PCA) suffers from
the same weakness, making it fragile with respect to outliers. To
address this sensitivity, Candès et al [8] introduced a robust princi-
pal components analysis (RPCA) that decomposes a data matrix X
into a low-rank matrix L containing dominant coherent structures,
and a sparse matrix S containing outliers and corrupt data:

X = L + S. (1)

The principal components of L are robust to the outliers and
corrupt data in S. The RPCA decomposition has tremendous appli-
cability for many modern problems of interest, including video
surveillance [3] (where the background objects appear in L and
foreground objects appear in S), natural language processing [26],
matrix completion and face recognition [54].

Mathematically, the goal of RPCA is to find matrices L and S that
satisfy

min
L,S

rank(L) + ‖S‖0 such that L + S = X. (2)

However, neither the rank(L) nor the ‖S‖0 terms are convex, and
this is not a scalable optimization problem. Similar to compressed
sensing [14,9], it is possible to solve for the optimal L and S with
high probability using a convex relaxation of (2):

min
L,S

‖L‖∗ + �‖S‖1 such that L + S = X. (3)

Here, ‖·‖* denotes the nuclear norm, given by the sum of singular
values, which is a proxy for rank. The solution to (3) converges to the
solution of (2) with high probability if � = 1/

√
max(n, m),  where

n and m are the dimensions of X, given that L is low-rank and S is
sparse.

The problem in (2) is known as principal component pursuit (PCP),
and may  be solved using the augmented Lagrange multiplier (ALM)
algorithm. The augmented Lagrangian may  be constructed as:

L(L, S, Y) = ‖L‖∗ + �‖S‖1 + 〈Y, X − L − S〉 + �

2
‖X − L − S‖2

F . (4)

A general solution would solve for the Lk and Sk that minimize L,
update the Lagrange multipliers Yk+1 = Yk + �(X − Lk − Sk), and iter-
ate until the solution converges. This is outlined in Algorithm 1.
For this specific system, the alternating directions method (ADM)
[30,55] provides a simple procedure to find L and S. The parameter
� is discussed more in [55,8].

In the following, RPCA will be used to develop low-dimensional
representations for high-dimensional aircraft metrology data (e.g.,
laser scans or point cloud measurements). In particular, the left
singular vectors � of the low-rank matrix L provide robust principal
components, and are computed via the SVD:

L = �DV∗. (5)

These low-rank coherent patterns will then facilitate sparse sensing
strategies.
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