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a b s t r a c t

The capacity credit for a generator is the fraction of its nameplate capacity that can contribute to meeting
the system's resource adequacy. However, estimating the capacity credit of variable renewable energy is
challenging due to the variability, uncertainty, and spatial diversity of the renewable resources. This
study uses the Regional Energy Deployment System to quantify the impacts on the U.S. power sector
through 2050 from misestimations of renewable capacity credit. Results show that small underestimates
of the renewable capacity credit have little impact on system buildout, but that large underestimates
(>50%) can reduce solar photovoltaic deployment by nearly 100 GW (50%) and wind by up to 43 GW
(22.8%) in 2030s. Such large differences are possible because the capacity credit for variable renewable
energy can substantially impact the overall costs and value of variable renewable energy relative to other
technologies. Such effects are most strongly felt in the mid-term but are less relevant over the long-term
due to the declining value of variable resources. Underestimating the capacity credit of variable
renewable energy leads to increased system costs and emissions. Conversely, overvaluing the capacity
credit of variable renewable energy reduces system costs at the risk of lower reliability. Keywords: Wind,
Solar, Renewable Energy, Capacity Value, Capacity Credit, Resource Adequacy.
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1. Introduction

With the recent rapid increase in variable renewable energy
(VRE) deploymentdprimarily wind and solar photovoltaics (PV)d
in power systems across the world, there is a need to understand
how VRE generators contribute to resource adequacy. Resource
adequacy ensures that there is sufficient generating capacity to
support the demand for a target level of reliability [1]. Historically,
resource adequacy focused on the peak demand times for a given
region. Each generator can contribute up to its nameplate capacity
toward the resource adequacy requirement. The monetary value of
a given generator's capacity contribution to the overall system
adequacy is known as capacity value, and the capacity contribution
as a fraction of the generator's nameplate capacity is referred to as
capacity credit [2]. In this paper, the acronym “CV,” rather than
“CC,” is used to refer to the average capacity credit of a generator in
order to avoid confusionwith the commonly used acronym “CC” for
combined cycle plants.

While the concept of VRE CV is generally understood, there is no
consensus on its treatment or estimation method. As this paper

discusses later, the ideal calculation of CV is with reliability-based
probabilistic methods. However, in practice (i.e., actual system
planning activities and research-based modeling analyses) esti-
mation methods are often used. Some use simple rules of thumb to
using averages of historic capacity factors (CFs) during periods of
highest system risk [2]. Some use statistical-based methods that
aim to link the capacity contribution of a given resource to a desired
reliability target [3]. Full probability models are often used in aca-
demic studies [4]. Methods used by real system operators tend to
be simplistic. For example, MISO does a two-step calculation by first
calculating the capacity factor for each wind farm for the top 8 peak
load hours of the previous year, then multiply a scalar of K¼ 0.65,
which is MISO's ratio of effective load carrying capacity, to the
weighted average of the wind farm capacity factors [5]. PJM uses
the hourly output data during the prior three summers of operation
to calculate the CF to be used in the current year [6]. The resulting
CVs can vary widely between these estimation methods, high-
lighting the importance of ensuring proper method selection when
applying CV approaches to long-term planning.

Understanding the contribution of VRE to resource adequacy is
increasingly important because VRE is projected to comprise a
significant portion of the overall U.S. generator fleet in the next
several decades [7], with technology cost reductions driving much
of that growth in VRE [8]. Overvaluing VRE could lead to system
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capacity shortages or more-expensive stopgap measures to ensure
adequacy, while undervaluing VRE could lead to suboptimal
deployment of VRE and a more expensive, overbuilt system. In
addition, other elements of the power system such as storage,
electric vehicle charging, and demand response are evolving in
ways that could change the highest risk hours, which are often used
for calculating the CVs of VRE. As a result, it is important that VRE
CV calculation methods account for the dynamic interactions of
VRE with the broader system.

As more VRE resource is added to the system, the marginal CV of
the resource declines due to its coincidental nature with other re-
sources of the same type. The gradual declining CV trend for wind
and the benefit from geographic aggregation is documented in
wind [9]. The marginal CV for solar PV has a steeper decline than
wind CV, even though solar PV's initial CV is much higher [10]. The
exact shape of this CV versus penetration curve can vary signifi-
cantly by region and by resource type, but the shape generally
slopes downward. CV levels for PV start higher than those for wind
and sharply drops to about 0% CV around 20% penetration levels;
wind CV levels start lower than those for PV and slowly approach
under 20% CV beyond 20% penetration.

Previous work has established that capturing the downward
sloping shape for PV CV is critical for properly valuing the capacity
contribution of VREs in long-term planning models [11]. However,
it is unclear how accurate that shape must be, as the impact of
misestimations of CVs have not been quantified. This study assesses
the sensitivity of the VRE CV estimation within a long-term ca-
pacity expansion model. This study shifts the CV curve down (and
up as a sensitivity) by scaling the wind and PV CVs by certain fixed
percentage factors to represent the misestimation of VRE CV. As
shown in Fig. 1, this is similar, but not equivalent to, uniformly
shifting the curve to the left. The impact on VRE deployment and
overall system cost is then evaluated. Furthermore, the results
show that VRE deployment is insensitive to the placement of the CV
curve as long as CV estimates deviate by no more than about 10%
from the actual value.

The purpose of this work is to help system planners, regulators,
and other electric system stakeholders understand the

consequences of inaccuracy in their CV methods, assuming the
underlying CV curve is adequately shaped and other system in-
teractions are properly considered. This paper consists of four
parts:

� Literature review of CV assessment methods and the challenges
in obtaining accurate CVs,

� Methods for using a capacity expansion model to evaluate the
impact of misestimating CV,

� Modeling results including installed capacity, generation, sys-
tem cost, and emissions, and

� Conclusions.

2. Literature review

A review of the existing literature shows that 1) a wide range of
CV assessment methods with different merits are available; 2) VRE
brings additional challenges to producing robust CV results; and 3)
simplified CV estimation methods are used in planning and
analytical models, resulting in inaccurate CV results. These three
issues combined makes misestimations of VRE CVs possible in real
life. The impact of such misestimations at the U.S. national level has
not been quantified. Therefore this paper's contribution to the
literature is to quantify the potential impact of misestimations in
VRE CVs on the contiguous U.S. power system.

2.1. Capacity credit assessment methods

Abundant literature has covered a variety of VRE CV methods.
Milligan and Porter [12] review U.S. wind CV methods and how
wind is defined as a capacity resource in different regions. Zhang
et al. [14] review solar CV methods and examines the difference
between solar CV and wind CV. And Dent et al. [4] review applied
studies considering solar power, particularly incorporating VRE in
capacity markets. The VRE CV methods can be divided into two
broad groups: reliability-based methods and approximation-based
methods. Reliability-based approaches use probabilistic methods
that are rooted in the loss-of-load-probability (LOLP) and the loss-
of-load expectation (LOLE) metrics, which are used to calculate the
effective load carry capability (ELCC) of generators [15]. The prob-
abilistic methods are the preferred method for calculating CV,
recommended by NERC [16], IEEE Wind Power Coordinating
Committee [17], and the International Energy AgencyWind Task 25
[9].

Other similar metrics used in LOLP-based methods include
equivalent firm power (EFP) and equivalent conventional power
(ECP). EFP of a generator is the capacity of a fully reliable generator
(i.e., with a forced outrage rate of 0%) that can be replaced while
maintaining the same LOLE. Similarly, ECP is the capacity of a
conventional generator (with a positive forced outrage rate) that
can be replaced while maintaining the same LOLE. ECP helps to
benchmark variable generation CV against that of a conventional
dispatchable resource [18]. The CV results based on the ELCC, EFP,
and ECP methods are usually consistent [19].

The LOLP-based metric is robust but has a drawback. It only
considers the number of days or hours during which the system
may experience a capacity shortage, but is not concerned with the
magnitude or duration of the shortfall [16]. As a result, other
metrics such as expected unserved energy and loss of load hours
are also been used. Expected unserved energy is used in a virtual
demand curtailment model to endogenously represent the capacity
contribution of VRE, in which generator capacities are decision
variables, not pre-determined [10]. Loss of load hours is used in a
building energy model coupled with a power system model to
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