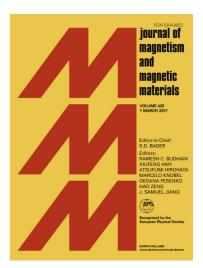
Accepted Manuscript

Investigation of the magnetic and magnetocaloric properties in metamagnetic $REFe_2Si_2$ (RE=Pr and Nd) compounds

Yihui Ma, Xiaoshi Dong, Yang Qi, Lingwei Li


PII: S0304-8853(18)31659-7

DOI: https://doi.org/10.1016/j.jmmm.2018.09.056

Reference: MAGMA 64338

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 30 May 2018
Revised Date: 1 August 2018
Accepted Date: 15 September 2018

Please cite this article as: Y. Ma, X. Dong, Y. Qi, L. Li, Investigation of the magnetic and magnetocaloric properties in metamagnetic *RE*Fe₂Si₂ (*RE*= Pr and Nd) compounds, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm.2018.09.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Investigation of the magnetic and magnetocaloric properties in metamagnetic $REFe_2Si_2$ (RE=Pr and Nd) compounds

Yihui Ma^{a, b}, Xiaoshi Dong^a, Yang Qi^b, and Lingwei Li^{a, b, *}

^a Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University,

Shenyang, 110819, China

^b Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern
University, Shenyang, 110819, China

Abstract: The crystal structure, cryogenic magnetic and magnetocaloric properties in NdFe₂Si₂ and PrFe₂Si₂ compounds have been investigated. The NdFe₂Si₂ and PrFe₂Si₂ crystallized in the body-centered tetragonal structure with the space group of I4/mmm, and underwent first order magnetic transition from paramagnetic to antiferromagnetic (PM - AFM) around Néel temperatures T_N of 8.5 K and 15.5 K, respectively. Under an applied-field change of ΔH =5 T, the maximum values of magnetic entropy change ($-\Delta S_M^{max}$) are 6.4 J/kg·K and 12.4 J/kg·K for PrFe₂Si₂ and NdFe₂Si₂, corresponding to relative cooling power (*RCP*) values of 0.8 J/cm³ and 1.0 J/cm³, respectively. Moreover, under low applied field change and at low temperatures, the PrFe₂Si₂ and NdFe₂Si₂ show an inverse MCE because of the existence of the AFM ordering, while under high external magnetic field change, a normal reversible MCE is observed, which is caused by first-order magnetic transition from antiferromagnetic (AFM) to ferromagnetic (FM) state.

Keyword: Rare earth based intermetallic compound; NdFe₂Si₂; PrFe₂Si₂; Magnetic property; Magnetocaloric effect.

1

^{*} Corresponding Author. Electronic mail: lingwei@epm.neu.cn (L. Li)

Download English Version:

https://daneshyari.com/en/article/10156439

Download Persian Version:

https://daneshyari.com/article/10156439

<u>Daneshyari.com</u>