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A B S T R A C T

The design of a reconfigurable transducer, based on rotating coils realized by printed circuit board (PCB),
is proposed for testing magnets in particle accelerators. Despite classical rotating coils, the sensitivity of this
transducers is not completely established with the design. Different configurations allow to tune sensitivity to
the specific components of the magnetic flux density to be measured. At this aim, specific field harmonics such
as dipole, quadrupole, sextupole, octupole, and decapole can be suppressed. Thus, the same accuracy level can
be ensured in measuring the field quality of several types of magnets.

In this paper, first, conventional design criteria are recalled. Then, the design of the reconfigurable transducer
based on four coils to suppress undesired field harmonics, from dipole up to decapole, is illustrated. The possibility
of using both radial and tangential geometry, without affecting compensation quality, is highlighted too. Finally,
a metrological analysis about the transducer manufacturing is reported, proving that the uncertainty arising from
the PCB production is made negligible.

1. Introduction

Magnetic measurements are crucial in the acceptance process of
magnets for particle accelerators. A magnet can be installed only
if its field quality complies with criteria established by accelerator
designers [1–4]. In this respect, the magnetic flux density B is usefully
described in terms of field harmonics, relying on a series expansion. The
set of coefficients of this series are known as multipole coefficients [5].
Even though, in an ideal magnet, the field would be characterized
solely by a specific flux distribution, in practice, non-idealities introduce
field errors, modeled as unwanted multipoles in the series expansion
of B. Such errors mainly arise from manufacturing and assembly and
cannot be assessed easily through numerical simulations. In fact, simu-
lations are widely used during the magnet design, but an experimental
campaign is mandatory for the design validation. Therefore, the field
multipoles must be measured both to validate the magnet design and to
verify magnet acceptance criteria [1–5].

In literature, the techniques employed to measure the magnetic flux
density of a magnet are mainly based on wires [6,7], Hall transduc-
ers [8–10], or sensing coils [11–13]. The choice of the measurement
principle depends on the characteristics of the magnet under test and
on the desired accuracy. For instance, rotating coils are considered as
the most accurate reference for measuring field harmonics in particle ac-
celerators [11,14]. These transducers received great attention from the
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scientific community also in other applications, such as fluxgates [15–
19]. In particular, rotating coils can be employed to selectively filter out
undesired field harmonics [13,20,21]. However, each coil assembly is to
be designed, optimized, and manufactured specifically with a predefined
configuration, in order to carry out a specific measurement task.

In the last decades, printed circuit boards (PCB) have been used
in order to reduce size and costs of coil-based transducers [22–26].
Only recently, technological advances have allowed the manufacturing
of PCB-based rotating coils with performance comparable to their
classical counterpart [27]. Furthermore, PCBs could provide flexibility
in configuring the coil transducer.

With this idea in mind, the present paper proposes a reconfigurable
PCB-based rotating coil transducer. The sensitivity to field harmonics
is adjustable so to selectively measure a desired multipole or to com-
pensate specific harmonics. In particular, in Section 2, conventional
rotating coil designs and compensation schemes are reviewed. Then,
in Section 3, a reconfigurable design involving four coils to suppress
harmonics from dipole up to decapole is illustrated. In the same section,
the possibility of exploiting both radial and tangential geometry without
affecting compensation quality is also highlighted. Finally, in Section
4, some metrological considerations about the PCB manufacturing are
reported, together with an estimation of how production uncertainties
influence the overall transducer sensitivity.
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2. Background

In this section, the theory behind the design of rotating coil sensors
is briefly recalled. Let us consider a two-dimensional problem under
the hypothesis of long and straight accelerator magnet. In practice,
this 2D discussion will be valid far from the magnet edges, and when
the magnet curvature is negligible compared to the coil dimensions.
Let us also consider a cylindrical coordinate system (𝑟, 𝜑, 𝑧) with the
axis 𝑧 coinciding with the magnetic axis. The magnet aperture 𝛺a is a
two-dimensional domain where a reference system based on the polar
coordinates (𝑟, 𝜑) is established. If the magnet aperture is free of currents
and/or magnetized materials, the components of the magnetic flux
density 𝐁 are
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where 𝑟0 is a reference radius, and 𝐶n(𝑟0) and 𝛼n(𝑟0) are extracted from
a Fourier analysis of 𝐵r (𝑟0, 𝜑) and 𝐵𝜑(𝑟0, 𝜑). 𝐵𝑟 and 𝐵𝜑 at the reference
radius 𝑟0 can be either measured or evaluated numerically [5,11]. The
circle of radius 𝑟0 has to belong to 𝛺a. The terms of the series are called
field harmonics or multipoles, while the coefficients are called multipole
coefficients. The index 𝑛 identifies the 𝑛th coefficient and corresponds
to a specific flux density distribution. The ‘‘European convention’’ has
been adopted for n [28]. The field 𝐁 can also be described in Cartesian
coordinates by introducing the complex variable 𝐳 = 𝑥+ 𝑗𝑦 = 𝑟𝑒𝑗𝜑 [11]:
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where the dependence of 𝐶n and 𝛼n from 𝑟0 is omitted to simplify the
notation. Note that the complex variable 𝐳 is not to be confused with
the longitudinal coordinate 𝑧.

In a coil transducer, the magnetic flux density is measured indirectly
by the voltage induced at the coil terminals, namely the time derivative
of the magnetic flux 𝛷 through the coil surface 𝑆

𝑉 (𝑡) = −
𝜕𝛷(𝑡)
𝜕𝑡

= − 𝜕
𝜕𝑡

(

∬𝑆
𝐁 ⋅ 𝐧̂ 𝑑𝑆

)

, (4)

where 𝐧̂ is the unit vector normal to 𝑆, identifying the orientation of the
coil surface itself. A non-zero voltage is measured only if the magnetic
flux varies with time, and, to this aim, rotating coils can be employed.
In this case, the rotation axis is chosen so that it coincides with the
magnetic axis of the accelerator magnet (axis 𝑧).

In the following, Section 2.1 recapitulates the main conventional
design of rotating coil transducers, while, Section 2.2 reviews existing
compensation schemes.

2.1. Conventional rotating coil design

The magnetic flux 𝛷 through a coil of arbitrary shape running
parallel to the axis 𝑧 can be written as [11]
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{ ∞
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where L is the extension of the coil in the 𝑧-axis direction (longitudinal
direction), 𝑁 the number of coil turns, and 𝐳𝟏 and 𝐳𝟐 the intersection
of the coil edges with the xy-plane (Fig. 1). If the coil is rotating with
angular speed 𝜔, 𝐳𝟏 = 𝐳𝟏,𝟎𝑒𝑗𝜔𝑡 and 𝐳𝟐 = 𝐳𝟐,𝟎𝑒𝑗𝜔𝑡 (where 𝐳𝟏,𝟎 = 𝑟1,0𝑒𝑗𝜑0 and
𝐳𝟐,𝟎 = 𝑟2,0𝑒𝑗𝜑0 ) identify the position of the coil at 𝑡 = 0.

The coil sensitivity factor is defined as
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Fig. 1. A coil with longitudinal edges of length 𝐿 parallel to the 𝑧-axis, intersecting the
xy-plane in the points 𝐳1 = 𝑥1 + 𝑗𝑦1 and 𝐳2 = 𝑥2 + 𝑗𝑦2.

𝐾n quantifies the sensitivity of the coil to the 𝑛th field harmonic, and it
depends on the coil geometry, while it is independent of 𝜔.

The rectangular geometry of the coil loop is common in accelerator
magnet applications, because it provides precise geometry and simplifies
calculations [22]. Two main rotating coil types are usually considered,
tangential and radial coils. A tangential coil has the linkage surface
orthogonal to the rotating shaft radius: its longitudinal edges are at the
same distance 𝑟𝑐 from the rotation axis, and it has an aperture 𝛿, as
shown in Fig. 2a. The magnetic flux through a rotating tangential coil
is
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{ ∞
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and the coil sensitivity factor is
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Analogously, in a radial configuration (Fig. 2b), the coil is in a radial
plane of the rotating shaft, so that 𝐳𝟏 = 𝑟1𝑒𝑗(𝜔𝑡+𝜑0) and 𝐳𝟐 = 𝑟2𝑒𝑗(𝜔𝑡+𝜑0).
The flux linkage is
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and the coil sensitivity factor is
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This factor depends on the coil geometry and on the index 𝑛 differently
from the tangential case. In the equations shown above, 𝑟1 is negative
when the rotation axis intersects the radial coil. This statement will
become clearer with the example of the dipole coil in the following
subsection.

2.1.1. Dipole and quadrupole coils
A dipole coil is shown in Fig. 3a. This is a particular radial coil

(Fig. 2b) with 𝑟2 = 𝑟𝑐 and 𝑟1 = −𝑟𝑐 . The coil sensitivity factor is
calculated by applying Eq. (10) with 𝜑0 = 0, corresponding to the coil
on the 𝑥-axis at 𝑡 = 0. It results
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