## **Accepted Manuscript**

Detectors for high-energy messengers from the Universe

W. Hofmann, J. Hinton



 PII:
 S0168-9002(18)30355-3

 DOI:
 https://doi.org/10.1016/j.nima.2018.03.020

 Reference:
 NIMA 60662

To appear in: Nuclear Inst. and Methods in Physics Research, A

Received date : 7 March 2018 Accepted date : 7 March 2018

Please cite this article as: W. Hofmann, J. Hinton, Detectors for high-energy messengers from the Universe, *Nuclear Inst. and Methods in Physics Research, A* (2018), https://doi.org/10.1016/j.nima.2018.03.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

### Detectors for high-energy messengers from the Universe

W. Hofmann and J. Hinton

Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg

#### Abstract

High-energy messengers from the Universe comprise charged cosmic rays, gamma rays and neutrinos. Here we summarize the detection principles and detection schemes for these particles, with a focus on ground-based instruments which employing natural media such as air, ice, or water as their detection medium.

#### Contents

| 1        | Hig                                         | h Energy Messengers                                                                        | <b>2</b> |
|----------|---------------------------------------------|--------------------------------------------------------------------------------------------|----------|
|          | 1.1                                         | Cosmic Rays                                                                                | 2        |
|          | 1.2                                         | High Energy Gamma Rays and Neutrinos $% \left( {{{\left( {{{{{{}}}} \right)}}}} \right)$ . | 3        |
| <b>2</b> | Detection Characteristics and Requirements  |                                                                                            | 4        |
|          | 2.1                                         | Effective Detection Area, Rates, Resolution,                                               |          |
|          |                                             | Particle Identification                                                                    | 4        |
|          | 2.2                                         | Detection Principles                                                                       | 4        |
| 3        | Shower Characteristics and Detection Basics |                                                                                            | 6        |
|          | 3.1                                         | General properties of showers                                                              | 6        |
|          | 3.2                                         | Shower Modelling and Uncertainties                                                         | 8        |
|          | 3.3                                         | Air Shower Detection                                                                       | 9        |
| <b>4</b> | Ground-particle Air Shower Detectors        |                                                                                            | 10       |
|          | 4.1                                         | Considerations in the design of a detection                                                |          |
|          |                                             | unit                                                                                       | 10       |
|          | 4.2                                         | Array Performance                                                                          | 11       |
| <b>5</b> | Ima                                         | ging of Air Showers                                                                        | 12       |
|          | 5.1                                         | Cherenkov Imaging                                                                          | 12       |
|          | 5.2                                         | Fluorescence Imaging                                                                       | 14       |
|          | 5.3                                         | Instrumentation Aspects for Cherenkov and                                                  |          |
|          |                                             | Fluorescence Imaging                                                                       | 14       |
|          | 5.4                                         | Radio 'Imaging'                                                                            | 15       |
| 6        | Underground Neutrino Detectors              |                                                                                            | 17       |
|          | 6.1                                         | Detection Approach                                                                         | 17       |
|          | 6.2                                         | Detector Design Considerations                                                             | 18       |
| 7        | Cor                                         | cluding Remarks                                                                            | 19       |

High energy astrophysics is concerned with the study of non-thermal particle populations in our Galaxy and beyond, with their sources, propagation, and impact on their cosmic environment. This field relies on detectors for highenergy messengers from the Universe – the subject of this article – but also on astrophysical instruments in many other domains of the electromagnetic spectrum, most notably in the radio and X-ray, tracing the synchrotron radiation of high energy electrons. For the current discussion, we will – somewhat arbitrarily – concentrate on the domain from GeV energies up, where the detectors address common science themes and share many detection features; MeV instruments differ in terms of their science focus but also in their detection principles. Download English Version:

# https://daneshyari.com/en/article/10156483

Download Persian Version:

https://daneshyari.com/article/10156483

Daneshyari.com