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A B S T R A C T

We review physical mechanisms and driving forces behind the microbunching instability in modern free-electron
lasers. Laser heater and alternative methods to fight the instability are presented and evaluated. Advanced uses of
the laser heater setup for temporal and spectral controls of the FEL and for intense THz production are discussed.
A recent idea of using the microbunching instability for coherent generation of UV radiation is described. Noise
suppression in relativistic beams is briefly reviewed.

1. Introduction

Modern free-electron lasers are playing an important role in develop-
ment of new experimental techniques for studies of fundamental prop-
erties of matter in chemistry, biology, life sciences, complex materials,
etc. [1]. Important parts of these FELs are high-brightness, high-current,
relativistic electron beams which are typically generated in RF photo
guns and compressed longitudinally in magnetic bunch compressors
located at several locations in the linac [2]. When such a beam is
sent though an undulator, an FEL instability develops driven by the
electromagnetic interaction and leading to the longitudinal bunching in
the beam at the undulator radiation wavelength. In optimal conditions,
this induced bunching results in coherent undulator radiation which can
be many orders more intense than the radiation of an un-bunched beam
at the entrance to the undulator.

It turns out that transporting high-brightness electron beams through
hundreds of meters of the accelerator and compressing it may lead to
deterioration of its properties through a mechanism similar to the FEL
instability but at much longer wavelengths. It is called the microbunch-
ing instability (MBI) and was first demonstrated in computer simulations
in Ref. [3]. The existence of this instability is now well established in
several FEL-driven accelerators (see, e.g., [4–6]). The instability creates
both the energy and density modulations in the beam increasing the
energy spread up to a level that can degrade the FEL gain process. An
accompanying and undesired effect is a large coherent optical transition
radiation signal at intercepting diagnostic screens, often limiting the
utility of beam profile imaging systems [5,7–9].

In this paper we review the mechanism of the instability and various
approaches to control it in modern FELs. We also discuss several beam
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dynamics aspects and radiation generation schemes that are related to
the understanding of this instability.

2. Shot noise in a quiet beam

Before addressing the issue of beam instabilities it is important to un-
derstand statistical properties of a ‘‘quiet’’ beam—which is not subjected
to such instabilities. In the absence of instabilities it is usually assumed
that particles are randomly distributed in space without correlations
between their positions.1 Statistical properties of such a distribution are
referred to as shot noise. While there are several techniques to describe
shot noise, the most general one uses the language of the distribution
functions and the formalism of the Vlasov equation. Below we will
briefly characterize the distribution function of the shot noise.

We consider fluctuations in the beam in the laboratory frame of
reference. The coordinate 𝑧 marks the position of a particle inside the
beam (with positive 𝑧 in the direction of propagation), and 𝜂 = 𝛥𝐸∕𝐸0 is
the relative energy deviation with the nominal energy of the beam 𝐸0 =
𝛾𝑚𝑐2. The 1D distribution function is 𝑓0(𝑧, 𝜂) = 𝑛0𝐹 (𝜂) + 𝛿𝑓 (𝑧, 𝜂) where
𝐹 (𝜂) is the averaged distribution function normalized by ∫ 𝑑𝜂𝐹 (𝜂) =
1, and 𝑛0 is the averaged line density of the beam. Note that we
assume on average uniform distribution over 𝑧 which is a reasonable
local approximation for small-scale fluctuations. The fluctuational part

1 More precisely, this is only true when one neglects the Coulomb interaction
between the particles which establishes such correlations. This interaction how-
ever is typically small in relativistic beams. Correlations can also be imprinted
on the beam in the process of electron emission in RF photo guns.
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𝛿𝑓 (𝑧, 𝜂) can be Fourier expanded, 𝛿𝑓𝑘(𝜂) = ∫ ∞
−∞ 𝑑𝑧𝑒−𝑖𝑘𝑧𝛿𝑓 (𝑧, 𝜂). For shot

noise, according to the statistical physics of ideal gas [10],

⟨𝛿𝑓 (𝑧, 𝜂)𝛿𝑓 (𝑧′, 𝜂′)⟩ = 𝑛0𝐹 (𝜂)𝛿(𝑧 − 𝑧′)𝛿(𝜂 − 𝜂′), (1)

which after the Fourier transformation gives

⟨𝛿𝑓𝑘(𝜂)𝛿𝑓𝑘′ (𝜂′)⟩ = 2𝜋𝑛0𝐹 (𝜂)𝛿(𝑘 + 𝑘′)𝛿(𝜂 − 𝜂′), (2)

where the angular brackets denote ensemble averaging. Introducing the
density fluctuation 𝛿𝑛(𝑧) = ∫ 𝑑𝜂 𝛿𝑓 (𝑧, 𝜂) we find by integrating (1) over
𝜂 and 𝜂′

⟨𝛿𝑛(𝑧)𝛿𝑛(𝑧′)⟩ = 𝑛0𝛿(𝑧 − 𝑧′). (3)

This is a mathematical expression of the properties of the shot noise:
density fluctuations in shot noise are uncorrelated in space.

3. Sources of impedance

According to the modern understanding there are two important
sources of impedance that drive MBI. The first one is the longitudinal
space charge (LSC) impedance (see, e.g., [11]). When a beam of small
radius 𝑎 propagates inside a round pipe of radius 𝑟𝑤 with perfectly
conducting walls it generates the longitudinal wakefield due to its space
charge. Assuming 𝑎 ≪ 𝑟𝑤, the space charge impedance is given by the
following expressions: for 𝑘 ≡ 𝜔∕𝑐 ≪ 𝛾∕𝑟𝑤,

𝑍LSC(𝑘) ≈ 𝑖
𝑍0𝑐
4𝜋

𝑘
𝛾2

(

1 + 2 ln
𝑟𝑤
𝑎

)

, (4)

and for 𝛾∕𝑎 ≫ 𝑘 ≫ 𝛾∕𝑟𝑤,

𝑍LSC(𝑘) ≈ 𝑖
𝑍0𝑐
4𝜋

𝑘
𝛾2

(

1 + 2 ln
𝛾
𝑎𝑘

)

. (5)

At even shorter wavelengths, for 𝑘 ≫ 𝛾∕𝑎, the concept of impedance,
strictly speaking, breaks down, because it is only valid if the induced
field does not change much through the beam cross section. For analysis
of the space charge forces at these short distances see [12,13]. As a
numerical illustration of the region of applicability of Eq. (5) consider
the following example: for 𝑎 = 100 μm, 𝛾 = 500, the condition 𝑘 ≲ 𝛾∕𝑎 is
satisfied for 𝜆 = 2𝜋∕𝑘 ≳ 1 μm.

Another driver of the microbunching instability is the so called
coherent synchrotron radiation (CSR) impedance. It arises when a
relativistic particle is moving in free space in a circular orbit. The CSR
wake is localized in front of the particle, 𝑧 > 0. Assuming the orbit radius
𝑅 and neglecting transition effects the CSR wake of a point charge per
unit length of path for the distances 𝑅 ≫ 𝑧 ≫ 𝑅∕𝛾3 is given by the
following equation2 [14,15]:

𝑤(𝑧) ≈ −
𝐸∥

𝑒
= − 2

34∕3𝑅2∕3𝑧4∕3
, (6)

with the corresponding longitudinal CSR impedance

𝑍CSR(𝑘) =
𝑍0
4𝜋

2
31∕3

𝛤
( 2
3

)

𝑒𝑖𝜋∕6 𝑘
1∕3

𝑅2∕3
, (7)

where 𝛤 is the gamma-function. These formulas can be used if the
transverse beam size 𝜎⟂ is not very large, 𝜎⟂ ≪ (o2𝑅)1∕3 (here o = 1∕𝑘).
Also the transient effects at the entrance to and exit from the magnet
can be neglected it 𝑙magnet ≳ (o𝑅2)1∕3.

4. Microbunching instability mechanism

Simulations and theories of MBI in bunch compressors were devel-
oped in 2001–2002 in Refs. [3,16–18] The mechanism for microbunch-
ing instability is similar to that in a klystron amplifier [16]. It is
illustrated in Fig. 1. A high-brightness electron beam with a small

2 An apparent divergence of the wake (6) is removed in calculation of the
bunch wake through integration by parts.

Fig. 1. Illustration of microbunching instability mechanism in linac-based FELs.

Fig. 2. A model of magnetic chicane consisting of three magnets with the middle
one two times longer than the first and the last ones. The magnet lengths are 𝐿𝑏,
2𝐿𝑏 and 𝐿𝑏, the bending radius in the magnets is 𝑅, and the distance between
the magnets is 𝐿𝑑 .

amount of density modulation can create longitudinal self-fields that
lead to beam energy modulation. Since a magnetic bunch compressor
(usually a chicane) introduces path length dependence on energy, the
induced energy modulation is then converted to additional density
modulation that can be much larger than the initial density modulation.
This amplification process (the gain in microbunching) is accompanied
by a growth of energy modulation and a possible growth of emittance
if significant energy modulation is induced in a dispersive region such
as the chicane. Thus, the instability can be harmful to short-wavelength
FEL performance by degrading the beam quality.

It is typical to assume that modulation wavelengths are much shorter
than the electron bunch length, and that density modulation amplitudes
are much smaller than the average current. Under these assumptions,
the amplitude of the density modulation at each wavelength grows
independently and is characterized by a gain spectrum 𝐺(𝑘) of the
accelerator system:

𝐺(𝑘) =
𝑛𝑓
𝑛𝑖

, (8)

where 𝑛 is the beam density modulation amplitude at the wavenumber
𝑘, and the initial density modulation can come from the non-uniformity
of the drive laser for the photocathode electron sources, or more likely,
the fundamental electron shot noise discussed in Section 2.

5. MBI gain in bunch compressor

In this section, we examine the microbunching gain due to effects of
coherent synchrotron radiation and longitudinal space charge. Again,
we consider a longitudinally uniform beam with an initial density
modulation given by 𝛿𝑛(𝑧) = 𝑛𝑖 sin 𝑘𝑖𝑧 with 𝜆𝑖 = 2𝜋∕𝑘𝑖 the wavelength
of the initial perturbation. The beam is sent through a chicane shown in
Fig. 2. The beam has an energy chirp, and after the passage through
the chicane the density becomes 𝛿𝑛(𝑧) = 𝑛𝑓 sin 𝑘𝑓 𝑧 where the final
wavenumber is larger than the initial one due to the compression,
𝑘𝑓 = 𝐶𝑘𝑖, with 𝐶 the compression factor.

A relatively simple model for the calculation of the gain factor 𝐺 was
proposed in [16]. The model assumes the CSR wake in the magnets as a
driving force of the instability, a cold beam and no compression, 𝐶 = 1.
Take an initial current perturbation 𝐼 = 𝐼0+𝐼1 cos 𝑘𝑧 with 𝐼1 ≪ 𝐼0. After
passage through the first magnet the energy modulation in the beam is
𝛥𝐸 = 𝑒𝑉 = 𝑒𝐿𝑏𝑍CSR(𝑘)𝐼1. Propagation from magnet 1 to 2 shifts the

183



Download English Version:

https://daneshyari.com/en/article/10156494

Download Persian Version:

https://daneshyari.com/article/10156494

Daneshyari.com

https://daneshyari.com/en/article/10156494
https://daneshyari.com/article/10156494
https://daneshyari.com

