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The structure of the N = Z nucleus 28Si is studied by resorting to an IBM-type formalism with s and d
bosons representing isospin T = 0 and angular momentum J = 0 and J = 2 quartets, respectively. T = 0
quartets are four-body correlated structures formed by two protons and two neutrons. The microscopic 
nature of the quartet bosons, meant as images of the fermionic quartets, is investigated by making use 
of a mapping procedure and is supported by the close resemblance between the phenomenological and 
microscopically derived Hamiltonians. The ground state band and two low-lying side bands, a β and a γ
band, together with all known E2 transitions and quadrupole moments associated with these states are 
well reproduced by the model. An analysis of the potential energy surface places 28Si, only known case 
so far, at the critical point of the U(5)–SU(3) transition of the IBM structural diagram.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The important role played by quartets in N = Z nuclei has been 
known for a long time [1–6]. By quartets we denote here alpha-
like four-body correlated structures formed by two protons and 
two neutrons coupled to total isospin T = 0. Recently, microscopic 
quartet models have been successfully employed to describe the 
proton–neutron pairing [7–12] as well as general two-body inter-
actions [13–16] in N = Z nuclei. As a basic outcome, the J = 0
quartet has been found to play a leading role but other low- J
quartets have also been found essential to describe the spectra of 
N = Z nuclei.

The difficulties associated with a microscopic treatment of N =
Z nuclei in a formalism of quartets rapidly grow with increasing 
the number of active nucleons. To make the application of this for-
malism possible also for large systems, in the present work we 
propose an approach where elementary bosons replace quartets. 
Based upon the above fermionic studies, we search for a descrip-
tion of N = Z nuclei in terms of only two building blocks, the 
T = 0, J = 0 and T = 0, J = 2 quartets. These quartets are there-
fore represented as elementary s and d bosons, respectively. This 
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bosonic architecture clearly coincides with that of the Interacting 
Boson Model (IBM) in its simplest version [17]. The application of 
this model, in terms of quartets, to N = Z nuclei is, however, with-
out precedent. We remark that in the standard IBM framework a 
proper treatment of even–even N = Z nuclei would imply the use 
of the much more elaborate IBM-4 version of the model [18] which 
carries 10 different types of pair bosons. We also notice that an 
IBM-type approach based on quartet bosons was applied long ago 
[19], on a purely phenomenological basis, to nuclei with protons 
and neutrons occupying different major shells, i.e. nuclei which are 
commonly described by IBM-2 [17].

The manuscript is structured as follows. In Section 2, we illus-
trate our formalism. In Section 3, this formalism is applied to a 
description of 28Si. In Section 4, we discuss the geometric struc-
ture of this nucleus. Finally, in Section 5, we give the conclusions.

2. The formalism

We start by setting the general quartet boson formalism for the 
treatment of N = Z nuclei. We describe these nuclei in terms of 
collective T = 0 ( J = 0 and 2) quartets that we represent as ele-
mentary sd bosons. By denoting the corresponding boson creation 
operators as b†

0 = s† and b†
2μ = d†

μ (μ being the angular momen-
tum projection), the most general one-body plus two-body Hamil-
tonian takes the standard IBM form
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where n̂λ = ∑
μ b†

λμbλμ and b̃λμ = (−1)λ+μbλ−μ . To evaluate to 
what extent the quartet bosons can be associated to microscopic 
quartets as well as to have an initial guess for the parameters of 
this Hamiltonian we shall resort to a mapping procedure. Mapping 
procedures allow to establish a link between spaces of composite 
and elementary objects and have been largely employed in a mi-
croscopic analysis of the IBM [20]. In this work we will follow the 
general lines of the procedure of Ref. [21] adapted for the quartet 
case.

We begin by introducing the most general quartet with isospin 
T = 0 and angular momentum (projection) J (M)

Q †
J M =

∑
i1 j1 J1

∑
i2 j2 J2

∑
T ′

C ( J )
i1 j1 J1,i2 j2 J2,T ′

×
[
[a†

i1
a†

j1
] J1 T ′ [a†

i2
a†

j2
] J2 T ′] J ,T =0

M
. (2)

With N such quartets we construct the fermionic quartet space

F (N) = {Q †
i1

Q †
i2

· · · Q †
iN

|0〉}i1≤i2···≤iN , (3)

where Q †
i ≡ Q †

J i Mi
. To the quartet operator Q †

i we associate the 

boson b†
i and, in correspondence with the fermion space F (N) , we 

define the boson space

B(N) = (Ni1 i2...iN )−1/2b†
i1

b†
i2

· · ·b†
iN

|0)}i1≤i2···≤iN , (4)

where Ni1 i2...iN is a normalization factor. There is a one-to-one 
correspondence between the states of F (N) and B(N) , the basic 
difference being that the boson states are orthonormal while the 
fermion ones are not. In correspondence with a fermion Hamilto-
nian H F , we define a boson hamiltonian H B such that

(N, l|H B |N,m) =
∑

i j

R(N)

li 〈N, i|H F |N, j〉R(N)
jm (5)

where |N, i〉 and |N, i) are generic states of F (N) and B(N) , re-

spectively, and R(N)

li = ∑
k
∗ f (N)

lk N (N)

k

−1/2
f (N)

ik with f (N)

lk and N (N)

k
being the eigenfunctions and eigenvalues of the overlap matrix 
of the fermion states |N, i〉, respectively. The asterisk in the ex-
pression for R(N)

li means that the sum is extended only over the 
non-zero eigenvalues N (N)

k . It can be proved that the eigenspec-
trum of H B contains all the eigenvalues of H F in F (N) plus a 
number of zero’s corresponding to the states with N (N)

k = 0. The 
boson Hamiltonian H B so constructed is Hermitian and, in general, 
N-body. Analogous expressions for H B , but for pair bosons, can be 
found in Refs. [22,23].

3. The spectrum of 28Si

We apply the formalism just described to the nucleus 28Si. 28Si 
has 6 protons and 6 neutrons outside the 16O core. Thus we de-
scribe this nucleus in terms of three collective quartets that we 
represent as elementary sd bosons. The corresponding theoretical 
spectrum has only 10 states. The angular momenta of the states 
are such that these can be arranged into a ground state band and 
two side bands, a β and a γ band. Correspondingly, as experimen-
tal spectrum of 28Si we consider only the ground state band and 
two low-lying β and γ bands. These β and γ bands have their 

Fig. 1. Experimental [26] and theoretical low-energy spectra of 28Si. Arrows rep-
resent B(E2) transitions and the corresponding values (in W.u.) are given by the 
numbers next to them. The circle on the 2+ level stands for the quadrupole mo-
ment of this state (in eb). The number below the ground state gives the binding 
energy (experimental value from Ref. [37]).

band heads at 4.98 MeV and 7.42 MeV, respectively. According to 
Ref. [24], these ground, β and γ bands share a common intrinsic 
structure, all being classified as “oblate”. These experimental bands 
are shown on the left side of Fig. 1. Some uncertainties are present 
for the J = 4 state of the β band due to the lack of experimental 
information. The state which has been tentatively inserted in Fig. 1
is the J = 4 state at E = 10.67 MeV. It is worth mentioning that 
the experimental spectrum shown in Fig. 1 is only a part of the 
complex spectrum of 28Si, which contains many other bands [24].

To describe the spectrum of Fig. 1 with the Hamiltonian (1) we 
proceed as follows. As quartets Q †

J M (2) we define those which 
result from a diagonalization of the USDB Hamiltonian [25] in a 
space of two protons and two neutrons coupled to T = 0 and 
J = 0, 2. According to the mapping procedure outlined in Sec-
tion 2, the values of the single boson energies in the Hamiltonian 
(1) are therefore the energies of these quartets. These are precisely 
ε(0) = −37.713 MeV for J = 0 and ε(2) = −36.158 MeV for J = 2. 
The remaining parameters, i.e. the two-body matrix elements of 
the Hamiltonian, are fitted to the experimental data. As a start-
ing point for this fit we have used the two-body matrix elements 
derived from the USDB interaction according to the boson map-
ping presented above. These matrix elements are shown in Fig. 2
(dashed line). In the same figure we show (solid line) the matrix 
elements which provide the best fit of the experimental spectrum. 
With the notation of Fig. 2, the adopted values are (in MeV): (1) =
−3.374, (2) = −0.859, (3) = −3.875, (4) = −14.298, (5) = −2.348, 
(6) = −6.746, (7) = −9.316. Some differences can be seen be-
tween microscopically derived and phenomenologically fitted pa-
rameters (particularly at point (3)). These differences, which have 
significant effects on the final spectrum, are expected to reflect a 
renormalization of the boson parameters which takes into account 
the lack of J > 2 quartets (whose role has been previously pointed 
out [13]) as well as the lack of three-body terms in H B . The overall 
agreement between the two set of parameters of Fig. 2 is, how-
ever, such to support the microscopic interpretation of the bosons 
as images of T = 0 quartets.

The theoretical spectrum of the Hamiltonian (1) with the pa-
rameters fitted as discussed above is shown Fig. 1. A good agree-
ment is seen between theory and experiment. The calculations 
generate also a 0+ state at 11.61 MeV, not shown in the figure. The 
only certain experimental 0+ state present in the ENSDF database 
[26] in this region is located at 10.27 MeV but it is a T = 1 state. 
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