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The presence of a horizon is the principal marker for black holes as they appear in the classical theory 
of gravity. In General Relativity (GR), horizons have several defining properties. First, there exists a 
static spherically symmetric solution to vacuum Einstein equations which possesses a horizon defined 
as a null-surface on which the time-like Killing vector becomes null. Second, in GR, a co-dimension 
two sphere of minimal area is necessarily a horizon. On a quantum level, the classical gravitational 
action is supplemented by the quantum effective action obtained by integrating out the quantum fields 
propagating on a classical background. In this note we consider the case when the quantum fields are 
conformal and perform a certain non-perturbative analysis of the semiclassical equations obtained by 
varying the complete gravitational action. We show that, for these equations, both of the above aspects 
do not hold. More precisely, we prove that i) a static spherically symmetric metric that would describe a 
horizon with a finite Hawking temperature is, generically, not a solution; ii) a minimal 2-sphere is not a 
horizon but a tiny throat of a wormhole. We find certain bounds on the norm of the Killing vector at the 
throat and show that it is, while non-zero, an exponentially small function of the Bekenstein–Hawking 
(BH) entropy of the classical black hole. We also find that the possible temperature of the semiclassical 
geometry is exponentially small for large black holes. These findings suggest that a black hole in the 
classical theory can be viewed as a certain (singular) limit of the semiclassical wormhole geometry. We 
discuss the possible implications of our results.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Existence of black holes is one of the most fascinating predic-
tions of Einstein’s theory of gravity. There is accumulating astro-
physical evidence that black holes, or compact objects that look 
pretty much like black holes, are not rare in the Universe. The cata-
log [1] of stellar-mass black holes contains hundreds of candidates. 
Supermassive black holes are believed to be in the center of any 
galaxy including the Milky Way. Yet another evidence comes from 
the recent detection of a gravitational wave signal which originates 
from a coalescence of two massive black holes [2]. However, the 
direct detection of a black hole event horizon remains the princi-
pal experimental challenge.

On the other hand, there have been suggestions [3], [4], [5], 
[6], [7] that wormholes may mimic very closely the behavior of 
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black holes, including the geodesics and the characteristic quasi-
normal modes, although not having the defining property of black 
holes – the existence of a horizon. The latter is replaced by a tiny 
throat, the longitudinal size of which is such that it may serve as 
a storage for the information ever fallen into the “black hole”. For 
sufficiently small deviation parameter, the wormhole geometry is 
very difficult, if ever possible, to distinguish experimentally from 
the black hole geometry. In particular, as was discussed in [8], the 
gravitational ringdown encoded in the shape of the recently ob-
served gravitational wave signal is not sufficient to actually probe 
the horizon and, thus, distinguish the two geometries.

The goal of this note is to provide more evidence for the worm-
hole picture and to demonstrate that, on the theoretical side, the 
existence of black holes, as we know them in General Relativity, 
is far from evident as soon as the quantum modifications of GR 
are taken into account. Indeed, the quantum fields generate a cer-
tain, generally non-local, modification (see for instance [9]) of the 
gravitational action and a respective modification of the gravita-
tional equations. In a semiclassical description, in which the grav-
itational field (metric) is not quantized and all other matter fields 
are considered to be quantum, the modified Einstein equations de-
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fine the so-called semiclassical gravity. These modified equations, 
being fundamentally non-local, are extremely complicated so that 
the exact solutions can be found only in some very special, sym-
metric, cases [10], [11]. Previous works on semiclassical black holes 
include [12].

There are two aspects of classical horizons as they appear in 
GR. First of all, a horizon is simply a special surface in a static 
spherically symmetric metric on which the time-like Killing vec-
tor becomes null. The non-vanishing gradient of the norm of the 
Killing vector at the horizon defines the Hawking temperature. To 
leading order, near the horizon, the Einstein equations are satisfied 
for any temperature. The latter is fixed to be related to the mass by 
considering the solution globally, everywhere between the horizon 
and spatial infinity.

The second aspect relates horizons to surfaces of minimal area. 
Indeed, in GR if a co-dimension two sphere � is minimally em-
bedded in a four-dimensional static spacetime then this sphere is 
a horizon (or, mathematically more rigorously, a bifurcation sphere 
of the event horizon). This second aspect is less known so that we 
will review it below.

Our main goal in this note is to analyze both these aspects in 
the framework of a semiclassical theory of gravity. To simplify the 
analysis we shall consider the quantum modification of the gravi-
tational action produced by quantum conformal fields. In this case 
the scaling properties of the quantum action are uniquely fixed 
by the conformal charges of the CFT. This helps to make a rather 
general analysis for an arbitrary unitary CFT. Yet, our analysis is 
essentially local: we expand the metric in a small vicinity of the 
would be horizon and analyze the local solution to the modified 
gravitational equations. Thus, we do not have access to the global 
behavior of the solutions. However, this local analysis happens to 
be extremely informative as it allows us to rule out solutions with 
horizons, and, in fact, detect the drastic deviations from the classi-
cal behavior. More precisely, we have found that

i) a static spherically symmetric metric with a horizon character-
ized by a finite (non-vanishing) temperature is, generically, not
a solution to the semiclassical gravitational equations1;

ii) in semiclassical gravity, a 2-sphere of minimal area embedded 
in a static spacetime is not a horizon. Rather, it is a throat 
of a wormhole. We find a bound on the norm of the Killing 
vector at the throat and show that it is an exponentially small 
function of the Bekenstein–Hawking entropy of the classical 
black hole.

Thus, the static solutions to the semiclassical gravity are hori-
zonless and the classical horizons are replaced by wormholes! This 
is as anticipated in [3]. Our result ii) shows that for the astrophys-
ical black holes, the parameter (the smallest value of the norm of 
the Killing vector) that characterizes the deviation of the wormhole 
geometry from that of a black hole, although non-vanishing, is ex-
tremely small. That is why it might be extremely difficult to detect 
the deviation experimentally. Below we discuss this and other im-
plications of our findings. We stress that our results concern only 
the static configurations. Although we anticipate that they can be 
extended to a stationary, rotating case, we can not exclude that 
there may exist some dynamical, time dependent solutions with 
an evolving horizon.

1 This statement is not to be confused with the smooth horizon structure of the 
well-understood Hartle–Hawking state for Rindler spacetime or similar set-ups. As 
we comment in remarks (d) of section 7, we are exclusively looking at states (such 
as Boulware), where the stress-tensor does diverge near the horizon and as a result 
modifies the geometry there.

2. Two aspects of horizons in GR

We consider a static spherically symmetric metric of the gen-
eral form (we prefer to work in the Euclidean signature)

ds2 = �2(z)gμνdxμdxν

= �2(z)
(

dt2 + N2(z)dz2 + R2(z)(dθ2 + sin2 θ dφ2)
)

. (1)

The geometrical radius of a 2-sphere is r(z) = R(z)�(z). Upon 
varying the gravitational action with respect to �(z), N(z) and r(z)
one gets three equations, one of which by Bianchi identities fol-
lows from the other two. The norm of the time-like Killing vector 
ξ = ∂t is ξ2 = �2(z). Vanishing of this norm signals the existence 
of a horizon. Clearly, this is a point (or in fact a 2-sphere) where 
the function �(z) vanishes. A particular choice for the function 
N(z) is a matter of convenience and a choice of the coordinate 
system.

I. Universality near horizon. Consider the gauge N(z) = 1. Assum-
ing that there exists a horizon at r = rh with a finite temperature 
T = 1/β , one finds the near horizon behavior

�(z) = e−2π z/β + . . . , R(z) = rhe2π z/β + . . . , (2)

where . . . stand for subleading terms. The regularity of the metric 
requires the Euclidean time to be periodic with period β . Notice 
that in these coordinates the horizon is located at z → ∞. In this 
regime, the optical metric gμν in (1) universally approaches [13] a 
product space of one-dimensional circle Sβ

1 with a 3-dimensional 
hyperbolic space H3 of radius β/(2π).

Horizon in classical theory (aspect A): There exists an exact solution 
to the classical Einstein equations (with or without cosmological con-
stant) such that the static spherically symmetric metric locally behaves 
as in (2). To leading order, the equations are satisfied for any β . The 
latter is related to the mass by studying the solution globally.

II. Horizon as a minimal surface. Consider now the gauge N(z) =
1/�(z). In this case the radial coordinate ρ = z measures the 
geodesic distance in the radial direction. The two independent Ein-
stein equations then take the form (written in terms of geometrical 
radius r(ρ))

2rr′′ + r′ 2 − 1 = 0 ,

�(r′ 2 − 1) + 2rr′�′ = 0 . (3)

Horizon in classical theory (aspect B): Suppose that the 2-sphere at 
ρ = ρh is a minimal area surface, i.e. r′ = 0 at ρ = ρh. Then it fol-
lows from the second equation in (3) that the function �(ρh) = 0 and, 
hence, ρ = ρh is a horizon. Notice that �′(ρh) is not determined 
from (3), it is a constant of integration. Fixing the temperature as 
the periodicity in the Euclidean time t , we can determine �′(ρh)

by the condition of absence of a conical singularity in the metric 
(1). Of course, globally, equations (3) describe nothing else but the 
Schwarzschild solution.

Below we shall examine the validity of the analogous aspects in 
the semiclassical gravity.

3. Semiclassical gravitational equations

The semiclassical gravitational action is composed by adding 
to the classical Einstein–Hilbert action W E H [G] a quantum effec-
tive action �[G] obtained by integrating out the quantum mat-
ter fields. For simplicity we shall consider conformal fields. In 
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