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We study the dynamic behavior of temperature field in a buoyancy-driven turbulent fire from the view-
points of symbolic dynamics, complex networks, and statistical complexity. The permutation entropy and 
the horizontal visibility network entropy allow us to capture the subtle changes in temperature fluctua-
tions. The possible existence of deterministic chaos in temperature fluctuations, as well as in streamwise 
flow velocity fluctuations [Takagi et al., Phys. Rev. E 96 (2017) 052223], is clearly verified using the mul-
tiscale complexity-entropy causality plane.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Combustion is a well-known example of chemical systems with 
extremely high temperatures. A rich spectrum of flame front insta-
bilities arises in an unsteady combusting flow mutually coupling 
with hydrodynamic, heat, and mass diffusion processes through a 
rapid chemical reaction, leading to the onset of chaotic dynamics 
during combustion. In open diffusion flames, the entire flow field 
mostly comprises of two gases: combustion products (low-density 
gas) behind the flame front and the surrounding ambient air (high-
density gas). The interface between the two gases becomes unsta-
ble owing to the buoyancy-driven Kelvin–Helmholtz type instabil-
ity mechanism, resulting in the formation of an upward toroidal 
vortex [1–3]. The toroidal vortex acts strongly on flame front so 
as to distort the flame shape, and gives rise to accompanying 
self-excited flame front oscillations with large-amplitude owing 
to the Rayleigh–Taylor instability mechanism [4]. These physical 
processes are strongly associated with the generation and growth 
of a buoyancy-driven turbulent fire [5]. We have recently con-
ducted a numerical simulation of a buoyancy-driven turbulent 
fire and found the possible presence of two important dynam-
ics in flow velocity field: low-dimensional deterministic chaos in 
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the near field dominated by the motion of toroidal vortices, and 
high-dimensional chaos in the far field forming a well-developed 
turbulent plume [6]. The presence of these dynamics was identi-
fied from the viewpoints of symbolic dynamics, complex networks, 
and statistical complexity.

Nonlinear time series analysis has become increasingly preva-
lent in many fields of physics and chemistry, and has currently 
been used for understanding the complex dynamics appearing in 
various flame front and combustion instabilities [7–24]. Thus far, 
numerous experimental and numerical studies on a buoyant plume 
and pool fires have shown the mean/instantaneous flow velocity 
and temperature distributions [4,25–36], correlating the distinct 
oscillation frequency with the Froude number, Richardson number, 
and Strouhal number [4,25,27–30,32,37,38]. However, the charac-
terization of the dynamic behavior of flow velocity and tempera-
ture fields using nonlinear time series analysis has not been con-
ducted in the previous studies on buoyancy-driven turbulent fires. 
In particular, the nonlinear dynamics of temperature field remains 
to be delineated. A new approach using nonlinear time series anal-
ysis would provide a crucial step towards a better understanding 
and interpretation of complex fire dynamics.

The objective of this study is to reveal the spatiotemporal dy-
namics of temperature field in a buoyancy-driven turbulent fire 
using nonlinear time series analysis based on symbolic dynam-
ics, complex networks, and statistical complexity. In this study, 
we estimate two classes of entropy, the permutation entropy [39]
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and the horizontal visibility network entropy [40], to quantify the 
randomness of dynamics. The former in terms of symbolic dy-
namics considers the probability distribution of possible existing 
rank order patterns in a time series, while the latter in terms of 
complex networks considers the probability distribution of possi-
ble degrees in the horizontal visibility graph consisting of vertices 
and edges. In relation to the permutation entropy, we estimate the 
number of forbidden patterns in the permutation spectrum [41] to 
test for the presence of nonlinear determinism during a buoyancy-
driven turbulent fire. The utility of the permutation spectrum has 
been shown in recent combustion studies [19,23]. The multiscale 
complexity-entropy causality plane (CECP) [42] in terms of statisti-
cal complexity, which incorporates the variations in the delay time 
of the phase space, enables us to quantify the degree of dynami-
cal complexity at different time scales and characterize dynamical 
states from deterministic chaotic processes to stochastic processes. 
In this study, we apply the multiscale CECP for temperature fluc-
tuations from the near field to far field. This paper is organized in 
five parts. A brief description of the numerical simulation is given 
in Sec. 2. The methodological framework of nonlinear time series 
analysis is described in Sec. 3. We present the results and discus-
sion in Sec. 4 and give a summary in Sec. 5.

2. Numerical simulations

Similarly to in our recent study [6], we numerically simulate 
the spatiotemporal dynamics of a buoyancy-driven turbulent fire 
employing a large-eddy simulation. In this study, we solve the 
following set of governing equations: the mass conservation equa-
tion, the momentum conservation equation, the energy conserva-
tion equation, and the chemical species equations (see ref. [6] for 
details). We also consider a global single-step irreversible chem-
ical reaction, a mixture fraction combustion model, and a low-
Mach-number flow assuming that the pressure field is decom-
posed into a background component, a hydrostatic component, and 
a flow-induced perturbation. The viscous stress in the momen-
tum conservation equation for a large-eddy simulation is given 
by the Smagorinsky model. We solve the governing equations by 
adopting second-order finite differences for spatial derivatives and 
an explicit second-order predictor–corrector scheme for temporal 
derivatives. The finite volume method is adopted to solve the ra-
diative term in the energy conservation equation. We set the com-
putational domain in the x, y, and z directions to 2.0 m, 2.0 m, 
and 4.0 m, respectively. The total number of cells is 1024000 and 
a uniform grid is used. Methane gas is supplied from a square cen-
ter area with dimensions of 1 m × 1 m. The temporal resolution in 
the numerical simulation is 1 ms, and nonlinear time series anal-
ysis is adopted for temperature fluctuations during 28 s after a 
sufficient amount of time has elapsed after the initial transient of 
the numerical simulation.

3. Methodological framework of nonlinear time series analysis

The Shannon entropy characterizes the dynamical randomness 
in a nonlinear system from the viewpoint of information theory, 
and is defined as the rate of production of information by Eq. (1).

s[P] = −
∑

i

pi log2 pi, P = {pi; i = 1,2, . . . , M}. (1)

Here, s is the Shannon entropy, pi is a discrete probability func-
tion, and M is the bin number. For a completely randomness 
process with the uniform probability distribution of P = (1/M,

1/M, . . . , 1/M), s[P] takes the maximum value smax (= log2 M). 
The normalized Shannon entropy S (= s/smax) is from 0 to 1. In 
this study, we estimate the permutation entropy [39] on the basis 

of symbolic dynamic approach. The permutation entropy considers 
the probability distribution of rank order patterns in the compo-
nents of the phase space vectors as pi in Eq. (1). M corresponds 
to the number of πi (= D!). After counting the number of realiza-
tions of permutations q(πi) for all vectors in the D-dimensional 
phase space T(t) = (T ′(ti), T ′(ti + τ ), . . . , T ′(ti + (D − 1)τ )) with 
embedding delay time τ , we compute the permutation entropy 
S p[P] normalized by the maximum permutation entropy sp,max as

S p[P] = −∑
πi

p(πi) log2 p(πi)

sp,max
, (2)

where p(πi) = q(πi)/(N −(D −1)τ ), T ′ is temperature fluctuations, 
and N is the number of discrete data points of T ′(t). S p increases 
with increasing randomness of the dynamics and takes a value of 
unity for a completely random process. On the basis of a recent 
study [41], D is set to 5 for the estimation of the permutation 
entropy.

The permutation spectrum test [41], which is a developed ver-
sion of the BP methodology [39], can test for the presence of non-
linear determinism in complex dynamics. The central idea of the 
permutation spectrum test is to investigate whether or not forbid-
den patterns appear in ordinal sequences that are obtained by the 
symbolization of a time series. In this method, we first partition 
T ′(t) into subsets with length L. After they are symbolized into 
ordinal sequences on the basis of the BP methodology, we obtain 
the permutation spectrum consisting of the frequency distribution 
of ordinal patterns for each subset and their standard deviation 
between the subsets. If nonlinear determinism is present in tem-
perature fluctuations, zero standard deviation with some forbidden 
patterns (original patterns that are absent in the frequency distri-
bution) will appear in the permutation spectrum. In contrast, there 
will be nonzero standard deviation and no forbidden patterns if 
stochastic process strongly dominates temperature fluctuations. In 
this study, L is set to 1000 (= 1 s) so that the data number of T ′(t)
is much larger than D! [39].

The concept of the horizontal visibility graph [40], which is pro-
posed as a simplified version of the natural visibility graph [43], 
serves as a bridge between nonlinear dynamics, graph theory, and 
time series analysis by transforming a time series into a graph with 
vertices under a geometrical criterion. This transformation has re-
cently been used for various fluid systems [18,44]. The horizontal 
visibility network entropy captures the nature of the high sensitiv-
ity to initial conditions and has been shown to have good perfor-
mance for classifying dynamical states appearing in radiative-heat-
loss-driven flame front instability [20], a falling thin-film flow [46], 
and double-diffusive instability [45]. Gotoda et al. [46] showed that 
the horizontal visibility network entropy is effective for captur-
ing a significant transition from low-dimensional chaos to high-
dimensional chaos and is linked to the permutation entropy. In 
a similar way to in previous studies [20,45,46], we estimate the 
randomness of network structures constructed from temperature 
fluctuations using the horizontal visibility network entropy Sn ,

Sn = −
∑

k

P (k) ln P (k), (3)

where P (k) is the degree distribution of the horizontal visibility 
graph. Note that when mapping each datum of T ′(t) into a node 
in a horizontal visibility graph, two arbitrary nodes i and j in an 
associated graph are linked if the corresponding T ′(ti) and T ′(t j)

are larger than T ′(tn), ∀n ∈ (ti, t j).
The disequilibrium-based statistical complexity allows us to 

quantify the dynamical complexity and was developed by Lam-
berti et al. [47] as the Jensen–Shannon statistical complexity C J S
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