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a b s t r a c t 

In this paper, the synchronization of two fractional-order complex chaotic systems with unknown param- 

eters and external disturbances are studied. Based on the Lyapunov stability theory and fractional-order 

integral sliding surface, a novel active sliding mode controller is proposed to synchronize fractional-order 

complex chaotic systems. Moreover, the controller is robust to unknown parameters and external distur- 

bances. Numerical simulations are implemented. Results indicate the proposed control strategy is robust 

and effective. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Recently, the fractional-order derivatives system has been inves- 

tigated extensively [1–3] . And many researches show the dynamic- 

system can be described by fractional-order derivatives in real- 

ity [4–6] . So far, fractional-order calculus theory has been widely 

studied in engineering and science [7–9] . Many systems can be 

described by fractional-order dynamics, such as viscoelastic sys- 

tems [10] , diffusion processes [11] , mechanics [12] , financial math- 

ematics [13] . Complex chaotic system [14,15] is a chaotic dynami- 

cal system, and its state variables belong to complex space. Due to 

the existence of the imaginary part of the state variables, the dy- 

namic behavior of the system is more complicated than that of the 

real chaotic system. In recent years, the research on chaotic char- 

acteristics, chaos control and synchronization of fractional-order 

complex systems received extensive attention [16–19] . For exam- 

ple, fractional-order complex Lorenz systems [16] , fractional-order 

complex Chen systems [17] , fractional-order complex Duffing’s sys- 

tems [18] , fractional-order complex Lü systems [19] and etc. So 

far, many effective synchronization methods were proposed [20–

25] . Such as active control [21] , linear and nonlinear feedback syn- 

chronous control [22] , sliding mode synchronous control [25] , frac- 

tional control [10] , impulsive control [26] , H ∞ 

synchronization con- 

trol [20] , adaptive control [24] and etc. However, many control 

methods mentioned above do not consider external environmental 

disturbances and system uncertainties. In fact, system uncertainties 
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and external environmental disturbances are unavoidable. Sliding 

mode control (SMC) is robust to system uncertainties and exter- 

nal disturbances, and it also is insensitive to parameter changes. 

Therefore, the SMC is more practical significance in the application 

of fractional nonlinear systems [27] . And the related works were 

investigated extensively. For example, an fractional-order SMC for 

a novel fractional-order hyperchaotic system was investigated in 

[28] . In Ref. [29] ., an adaptive sliding mode synchronization of two 

novel fractional-order chaotic systems with cubic nonlinear resis- 

tor was proposed. And a new single adaptive sliding mode variable 

structure controller was proposed in [30] . The dynamic character- 

istics of the fractional-order complex Lorenz system [16] and the 

fractional-order complex Chen system [17] were analyzed by Wang 

et al.; Liu et al. proposed a fractional-order complex T system [31] . 

All mentioned above were investigated under some special con- 

ditions, but few of them research it based on comprehensive con- 

sideration of unknown parameters, nonlinear input, uncertainties 

and external disturbances. However, in practice, these factors must 

be considered generally. Thus, the synchronization of fractional- 

order complex chaotic system with unknown parameters and ex- 

ternal disturbances was investigated in this paper. And, a novel 

SMC controller with novel fractional-order sliding mode surface 

was designed. The active control and SMC were combined also 

in this paper. The active control method can eliminate nonlinear 

items in the system. So, it is simple to apply. Compared with the 

conventional SMC method, the controller is more simple, more 

suitable for practical applications, and it has stronger robustness 

and faster response speed. 
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This paper is organized as follows. In Section 2 , an appropri- 

ate fractional-order differential definition was given. And a new 

n-dimensional fractional-order complex chaotic system was in- 

troduced. In Section 3 , based on the combination of the ac- 

tive control and the SMC, a suitable SMC for synchronizing the 

n-dimensional fractional-order complex chaotic systems was de- 

signed. In Section 4 , the numerical simulations were implemented 

to demonstrate the effectiveness and feasibility of the proposed 

control scheme. Conclusions were given in Section 5 . 

2. Problem description 

2.1. Preliminaries on fractional calculus 

Definition 1 [32] . For an arbitrary integral function f ( t ), its 

fractional-order integral operator of order α as follows 

I αt f (t) = 

1 

�(α) 

∫ t 

t 0 

f (τ ) 

(t − τ ) 
1 −α

dτ

here, t 0 ≥ 0, 0 < α < 1, and �(a ) = 

∞ ∫ 
0 

t α−1 e −t dt is a Gamma function. 

Definition 2 [33] . The Riemann-Liouville fractional derivative of 

order α is defined as 

RL D 

α
t f (t) = 

1 

�(n − α) 

(
d 

dt 

)n ∫ t 

t 0 

f ( τ ) 

( t − τ ) 
1 −n + α dτ, n − 1 < α < n 

here n is an integer. 

Definition 3 [32] . The Caputo fractional derivative of a function f ( t ) 

is given by 

C D 

α
t f (t) = 

1 

�(n − α) 

∫ t 

t 0 

f (n ) ( τ ) 

( t − τ ) 
α−n +1 

dτ, n − 1 < α < n 

Because the Laplace transform defined by Caputo need the 

same initial value as the Laplace transform of integer calculus 

needs, it’s easier to deal with the initial value problem for frac- 

tional differential equations. Its geometric and physical significance 

is clear, and it is widely used in practical engineering. 

2.2. System model 

Define the fractional-order complex systems as 

C D 

α
t x (t) = Ax (t) + f (x, t) + � f (x, t) + ζ (t) (1) 

here, x (t) = ( x 1 , x 2 , · · · , x n ) T ∈ C n is n-dimensional complex state 

vector; A ∈ R n × n is the constant matrix; f ( x, t ): C n × R → C n is a 

known complex nonlinear function; �f ( x, t ): C n × R → C n is the 

uncertainty nonlinear part; ζ (t) = ( ζ1 , ζ2 , · · · , ζn ) T ∈ R n is external 

interference. 

Eq. (1) is the drive system, the corresponding response system 

as 

C D 

α
t y (t) = (A + �A ) y (t) + g(y, t) + �g(y, t) + d(t) + u (t) (2) 

where y (t) = ( y 1 , y 2 , . . . , y n ) 
T ∈ C n is n-dimensional complex state 

vector; A ∈ R n × n is the constant matrix; �A ∈ R n × n is the 

uncertain matrix; g ( y, t ): C n × R → C n is the complex non- 

linear part; �g ( y, t ): C n × R → C n is the uncertain nonlinear 

part; d(t) = ( d 1 , d 2 , . . . , d n ) 
T ∈ R n is external interference; u (t) = 

( u 1 , u 2 , . . . , u n ) 
T ∈ C n is the control input vector. 

Define the synchronization error as e (t) = y (t) − x (t) . In order 

to synchronize the drive system with the response system, a suit- 

able controller u ( t ) is designed, such that lim 

t→∞ 

‖ e (t) ‖ = 0 , where 

e (t) = [ e 1 , e 2 , e 3 , . . . e n ] 
T is the state error. 

The synchronization error of systems (1) and (2) is determined 

as follows 

C D 

α
t e (t) = Ae (t) + �Ay (t) + g(y, t) − f (x, t) + �g(y, t) 

−� f (x, t) + d(t) − ζ (t) + u (t) 

= Ae (t) + F (x, y ) + d(t) − ζ (t) + u (t) (3) 

where F (x, y ) = �Ay (t) + g(y, t) − f (x, t) + �g(y, t) − � f (x, t) . 

Assumption 1. Assume that the uncertainties of �f ( x, t ) and �g ( y, 

t ) are bounded, and there are suitable positive constants ξ and μ
as follows 

| � f (x, t) | ≤ ξ , | �g(y, t) | ≤ μ

Assumption 2. Assume that positive constants σ exist, and that 

the external disturbances d ( t ) and ζ ( t ) are bounded as follows 

| d(t) − ζ (t) | ≤ σ

Property 1. [34] For a continuously differentiable function f ( t ), we 

have 

C D 

α1 

t f (t) C D 

α2 

t f (t) = 

C D 

α2 

t f (t) C D 

α1 

t f (t) = 

C D 

α1 + α2 

t f (t) 

3. Sliding mode synchronization controller design 

Based on the active control theory [21] , we can use the control 

input vector-function u ( t ) to eliminate all non-linear part of the er- 

ror system. By this way, the control input u ( t ) is defined as 

u ( t ) = G ( t ) − F ( x, y ) (4) 

And Eq. (3) is rewritten as 

C D 

α
t e (t) = Ae (t) + G (t) + d(t) − ζ (t) (5) 

The Eq. (5) contains a new control input variables G ( t ), accord- 

ing to the design of active SMC law [35,36] , design G ( t ) as follows 

G ( t ) = K · ϕ ( t ) (6) 

Where K ∈ R n × n is a constant gain matrix, ϕ( t ) ∈ R n × 1 is the 

control input and satisfies the following conditions 

ϕ(t) = 

{
ϕ 

+ (t) , s (e (t)) ≥ 0 

ϕ 

−(t) , s (e (t)) < 0 

s = s (e (t)) is a switching surface that prescribes the desired sliding 

dynamics. And Eq. (5) is rewritten as 

C D 

α
t e (t) = Ae (t) + K · ϕ(t) + d(t) − ζ (t) (7) 

The fractional-order sliding surface can be chosen as follows 

s (e (t)) = Be (t) + M · I αt · e (t) (8) 

where B ∈ R n × n is a constant coefficient matrix, M = 

diag[ m 1 , m 2 , ..., m n ] ∈ R n ×n , I αt which is the Caputo operator of 

order α. 

The fractional-order time derivative of Eq. (8) is 

C D 

α
t s (e (t)) = B 

C D 

α
t e (t) + Me (t) (9) 

According to the fractional SMC law [37] , we design function 

switching control as follows 

ϕ(t) = ϕ eq + ϕ d (10) 

where the equivalent control ϕeq keeps the state trajectory on the 

switching plane, φd is the switching control. 

Substituting Eq. (7) into Eq. (9) , we can obtain 

C D 

α
t s (e (t)) = B 

C D 

α
t e (t) + Me (t) 

= B [ Ae (t) + Kϕ(t) + d(t) − ζ (t)] + Me (t) (11) 
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