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a b s t r a c t 

Motivated by contemporary and rich applications of anomalous diffusion processes we propose a new 

statistical test for fractional Brownian motion, which is one of the most popular models for anomalous 

diffusion systems. The test is based on detrending moving average statistic and its probability distribu- 

tion. Using the theory of Gaussian quadratic forms we determined it as a generalized chi-squared dis- 

tribution. The proposed test could be generalized for statistical testing of any centered non-degenerate 

Gaussian process. Finally, we examine the test via Monte Carlo simulations for two exemplary scenarios 

of anomalous diffusion: subdiffusive and superdiffusive dynamics as well as for classical diffusion. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The theory of stochastic processes is currently an important 

and developed branch of mathematics [10,22,25] . The key issue 

from the point of view of the application of stochastic processes 

is statistical inference for such random objects [41,53,62,64] . This 

field consists of statistical methods for the reliable estimation, 

identification, and validation of stochastic models. Such a part 

of the theory of stochastic processes and the statistics devel- 

oped for them are used to model phenomena studied by other 

fields such as physics [28,60,75] , chemistry [28,66,75] , biology 

[11,14,28,32,65,66] , engineering [7,67] , among others. 

This work is motivated by growing interest and applications of 

the special class of stochastic processes, namely anomalous dif- 

fusion processes, which largely depart from the classical Brown- 

ian diffusion theory [50,63] . Such processes are characterized by 

a nonlinear power-law growth of the mean squared displacement 

(MSD) in the course of time. Their anomalous diffusion behav- 

ior manifested by nonlinear MSD is intimately connected with the 

breakdown of the central limit theorem, caused by either broad 

distributions or long-range correlations. More precisely, the MSD 

for anomalous diffusion processes behaves as a power law function 

t β , where the exponent β is called the anomalous diffusion expo- 

nent. In the case of β = 1 we have classical diffusion, while β � = 1 

we deal with anomalous diffusion. When β < 1 the MSD increases 

slower than linearly which is the case of subdiffusion, while β > 1 

the MSD increases faster than linearly and this is the superdiffu- 
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sion scenario. Today, the list of systems displaying anomalous dy- 

namics is quite extensive [26,31,35,44,56,59] . Therefore in recent 

years, there has been great progress in the understanding of the 

different mathematical models that can lead to anomalous dif- 

fusion [36,37,51] . One of the most popular of them is the frac- 

tional Brownian motion (FBM) [29,33,35,42,51,73,78] . Introduced 

by Kolmogorov [38] and studied by Mandelbrot in a series of pa- 

pers [46,47] , it is now a well-researched stochastic process. FBM is 

still constantly developed by mathematicians in different aspects 

[5,23,55,57,77] . 

The main subject considered in this work is the issue of rig- 

orous and valid identification of the FBM model. The problem of 

FBM identification has been described in the mathematical liter- 

ature for a long time [8,18] . However, most of the works mainly 

concern various methods of estimating the parameters of the FBM 

model. They are based, among others, on p-variation [45] , dis- 

crete variation [19] , sample quantiles [20] and other methods 

[9,12,21,27,43,52,74,81] . A certain gap in this theory is the lack of 

tools such as rigorous statistical tests to identify the FBM model in 

empirical data. Some approaches to FBM identification are known, 

e.g., application of empirical quantiles [13] , distinguishing FBM 

from pure Brownian motion [40] . According to the author’s cur- 

rent knowledge, the only statistical test for the FBM model is the 

test based on the distribution of the time average MSD [71] . Due 

to the lack of statistical tests specially designed for the FBM model, 

in this work, we propose such a statistical testing procedure. 

The proposed test has a test statistic which is the detrending 

moving average (DMA) statistic introduced in the paper [2] . For 

more than a decade, the DMA algorithm has become an impor- 

tant and promising tool for the analysis of stochastic signals. It is 
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constantly developed and improved [4,16,17,69] , its multifractal 

version was created and used [15,30,34,80] and it is applied for 

different em pirical datasets [39,58,61,68] . As one of the impor- 

tant method for fluctuation analysis, the DMA algorithm was often 

compared with other methods [6,79,82] 

In Section 2 we show that the distribution of the DMA statis- 

tics follows the generalized chi-squared distribution. The main 

Section 3 demonstrates the statistical testing procedure based on 

computing the DMA statistic for empirical data. In Section 4 the 

results of Monte Carlo simulations of the proposed test are pre- 

sented and discussed. Section 5 contains conclusions and final re- 

marks. In the Appendix A , the Matlab code of the proposed test is 

presented. 

2. Probability distribution of DMA statistic 

The DMA algorithm was introduced in [2] . For a finite trajectory 

{ X (1) , X (2) , . . . , X (N) } of a stochastic process the DMA statistic has 

the following form 

σ 2 (n ) = 

1 

N − n 

N ∑ 

j= n 

(
X ( j) − ˜ X n ( j) 

)2 
, n = 2 , 3 , . . . , N − 1 , (1) 

where ˜ X n ( j) is a moving average of n observations X ( j) , . . . , X ( j −
n + 1) , i.e. 

˜ X n ( j) = 

1 

n 

n −1 ∑ 

k =0 

X ( j − k ) . 

The statistic σ 2 ( n ) is a random variable which computes the mean 

squared distance between the process X ( j ) and its moving av- 

erage ˜ X n ( j) of the window size n . It has scaling law behavior 

σ 2 ( n ) ∼ C H n 
2 H , i.e. lim n →∞ 

E [ σ 2 (n ) ] 
Cn 2 H 

= 1 , where H is a self–similarity 

parameter of the signal [2,4] . The constant C H has explicit ex- 

pression computed in the case of fractional Brownian motion [4] . 

As a byproduct of this scaling law one can estimate the self–

similarity parameter H from linear fitting on double logarithmic 

scale [6,17,70] . 

In this work, we leave the issue of DMA algorithm as an esti- 

mation method and concentrate on the probability characteristics 

of this random statistic. Throughout the paper, we assume that 

the stochastic process X ( j ) is a centered Gaussian process. There- 

fore a finite trajectory X = { X (1) , X (2) , . . . , X (N) } is a centered 

Gaussian vector with covariance matrix � = { E [ X ( j) X (k ) ] : j, k = 

1 , 2 , . . . , N} . Let introduce the process Y ( j) := X( j + n − 1) − ˜ X n ( j + 

n − 1) , which is still a centered Gaussian process. We calculate the 

covariance matrix of the vector Y = { Y (1) , Y (2) , . . . , Y (N − n + 1) } 
E [ Y ( j) Y (k ) ] = E [ X ( j + n − 1) X (k + n − 1) ] 

−E 
[
X ( j + n − 1) ̃  X n (k + n − 1) 

]
−E 

[
˜ X n ( j + n − 1) X (k + n − 1) 

]
+ E 

[
˜ X n ( j + n − 1) ̃  X n (k + n − 1) 

]
= E [ X ( j + n − 1) X (k + n − 1) ] 

−1 

n 

k + n −1 ∑ 

m = k 
E [ X ( j + n − 1) X (m ) ] 

−1 

n 

j+ n −1 ∑ 

l= j 
E [ X (k + n − 1) X (l) ] 

+ 

1 

n 

2 

∑ 

j ≤l≤ j + n −1 

∑ 

k ≤m ≤k + n −1 

E [ X (l) X (m ) ] . (2) 

That matrix we denote by ˜ � = { E [ Y ( j) Y (k ) ] : j, k = 1 , 2 , . . . , N −
n + 1 } . We see that the dependence structure of the process Y ( i ) 

is fully determined by the covariance of the process X ( i ). Moreover 

the covariance E [ X ( l ) X ( m )] in formula (2) has a prefactor (
1 − 1 

n 

)2 

, for l = j + n − 1 ∧ m = k + n − 1 , 

1 

n 

2 
− 1 

n 

, for ( l = j + n − 1 ∧ m � = k + n − 1 ) 

∨ ( l � = j + n − 1 ∧ m = k + n − 1 ) , 

1 

n 

2 
, for l � = j + n − 1 ∧ m � = k + n − 1 . 

Therefore we can rewrite the formula (2) in the equivalent form 

E [ Y ( j) Y (k ) ] = 

(
1 − 1 

n 

)2 

E [ X ( j + n − 1) X (k + n − 1) ] 

+ 

(
1 

n 

2 
− 1 

n 

)[ 

k + n −2 ∑ 

m = k 
E [ X ( j + n − 1) X (m ) ] 

+ 

j+ n −2 ∑ 

l= j 
E [ X (l) X (k + n − 1) ] 

] 

+ 

1 

n 

2 

∑ 

j ≤l≤ j + n −2 

∑ 

k ≤m ≤k + n −2 

E [ X (l) X (m ) ] . (3) 

The average value of random variable σ 2 ( n ) we can now express 

based on (2) and (3) by covariance structure of the process X ( j ) 

E 
[
σ 2 (n ) 

]
= 

1 

N − n 

N ∑ 

j= n 
E 

[ (
X ( j) − ˜ X n ( j) 

)2 
] 

= 

1 

N − n 

N ∑ 

j= n 
E 
[
Y 2 ( j − n + 1) 

]

= 

1 

N − n 

N ∑ 

j= n 

{ (
1 − 1 

n 

)2 

E 
[
X 

2 ( j) 
]

+ 2 

(
1 

n 

2 
− 1 

n 

) j−1 ∑ 

m = j−n +1 

E[ X ( j) X (m )] + 

1 

n 

2 

j−1 ∑ 

m = j−n +1 

E 
[
X 

2 (m ) 
]

+ 

2 

n 

2 

∑ 

j −n +1 ≤k<m ≤ j −1 

E[ X (m ) X (l)] 

} 

. (4) 

We can also express the variance of the random variable σ 2 ( n ) 

V ar 
[
σ 2 (n ) 

]
= 

1 

(N − n ) 2 
V ar 

[ 

N ∑ 

j= n 
Y 2 ( j − n + 1) 

] 

= 

1 

(N − n ) 2 

N ∑ 

l,m = n 
Cov 

[
Y 2 (l − n + 1) , Y 2 (m − n + 1) 

]

= 

1 

(N − n ) 2 

N ∑ 

l,m = n 
E 
[
Y 2 (l − n + 1) Y 2 (m − n + 1) 

]
−E 

[
Y 2 (l − n + 1) 

]
E 
[
Y 2 (m − n + 1) 

]
. (5) 

The terms E 
[
Y 2 (l − n + 1) 

]
and E 

[
Y 2 (m − n + 1) 

]
one can com- 

pute from covariance of the process Y ( j ) according to (3) . The 4th–

order moment E 
[
Y 2 (l − n + 1) Y 2 (m − n + 1) 

]
can be expressed by 

covariance structure of process Y ( j ) according to Isserlis’ the- 

orem [72] , which states that for zero-mean multivariate nor- 

mal vector (X 1 , X 2 , . . . , X 2 n ) the higher moment E [ X 1 , X 2 , . . . , X 2 n ] = ∑ ∏ 

E 
[
X i X j 

]
, where the notation �

∏ 

means summing over all dis- 

tinct ways of partitioning X 1 , X 2 , . . . , X 2 n into pairs X i , X j and each 

summand is the product of the n pairs. Therefore we have 
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