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a b s t r a c t 

We study the scaling features in the evolutionary dynamics of two coupled chaotic systems based on the 

sequences of return times into a Poincaré section, contaminated with additive (measuring) noise. Using 

three models of chaotic systems: the Rössler oscillator, the Lorenz system, and the nephron model, and 

the detrended fluctuation analysis (DFA) as an approach for data processing, we demonstrate that the 

anti-correlated sequences of return times of synchronous motions show a higher sensitivity to measuring 

noise than the positively correlated series of return times of asynchronous oscillations. This conclusion is 

confirmed by the results for various oscillatory regimes in all models considered. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

A measured time series always contains noise of various origins 

[1] . Even if the dynamics of the system under study is determin- 

istic, the conversion of the analog signal to digital format is ac- 

companied by rounding errors, which can be treated as measuring 

noise. This type of noise does not influence the underlying dynam- 

ics of the system; however, it affects the accuracy of the evalua- 

tion of signal characteristics and the reliability of the diagnosis of 

the system’s state from experimental data. A generally used ap- 

proach to the processing of noisy data is its pre-filtering that can 

significantly reduce noise impact, especially when the frequency 

ranges of the signal reflecting the system’s dynamics and additive 

fluctuations do not overlap. In practice, such approach is typically 

used to remove high-frequency variations of a signal providing its 

smoothing, or to eliminate slow changes in the mean value treated 

as a trend for nonstationary time series. Over the past decades, fil- 

tering capabilities have been improved by means of wavelet-based 

techniques being able to extract localized fluctuations that are not 

removed with Fourier-based approaches [2–5] . 

Filtering does not always improve the characterization of noisy 

data sets. This is the case, e.g., when considering point processes, 

where information about the system’s dynamics is encoded by the 

times of stereotype events, and the data set represents a sequence 
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of time intervals between successive events [6] . Such a sequence 

is often a noise-like process, where external fluctuations are dif- 

ficult to detect and eliminate. In this regard, the effect of addi- 

tive noise on the characterization of the system’s dynamics from 

measured data should be known for various types of complex pro- 

cesses. From general assumptions, it could be expected that a small 

noise would provide insignificant changes in signal characteristics 

in comparison with fluctuations of higher intensity. Nevertheless, 

the effect of relatively weak fluctuations can differ between signals 

of distinct complexity and various dynamical regimes. 

In this study, we consider how measuring noise affects the scal- 

ing features of complex processes in the dynamics of two coupled 

chaotic oscillators characterized by the sequences of return times 

into a Poincaré section. Such systems demonstrate various entrain- 

ment forms, which depend on the coupling strength and the in- 

dividual dynamics of the oscillators. Unlike the frameworks of the 

classical theory of synchronization for periodic oscillations that is 

accompanied by a locking of their frequencies or phases, chaotic 

synchronization includes a wider range of entrainment phenom- 

ena represented by full synchronization [7,8] , phase synchroniza- 

tion [9,10] , lag synchronization [11] , and generalized synchroniza- 

tion [12–14] . The related entrainment influences the dynamics of 

individual oscillators and changes the scaling features of the return 

time sequences. In particular, chaotic synchronization typically re- 

duces the degree of multifractality in these sequences [15] , which 

can be treated as a kind of ordering appeared due to the coupling 

between interacting units. Besides changes in the multifractality, 

synchronous and asynchronous oscillations are often quantified by 
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Fig. 1. A simplified bifurcation diagram of the model of two coupled Rössler oscil- 

lators. 

Fig. 2. Oscillation frequencies for two coupled Lorenz systems depending on the 

coupling strength. 

different types of correlations, namely, by the anti-correlated se- 

quences of return times related to synchronous dynamics and by 

positive correlations of return times for asynchronous regimes [15] . 

Distinctions in the structure of the return time sequences can ex- 

ert different noise effect on the authentic characterization of the 

underlying dynamics from measured point processes. 

Based on the detrended fluctuation analysis (DFA) [16–18] , 

which is a widely used approach for studying the correlation prop- 

erties of complex time series [19–24] , we compare how measur- 

ing noise affects the error in characterizing the scaling features of 

various types of complex motions in the dynamics of interacting 

chaotic systems. We consider several models of chaotic oscillators 

including the Rössler system, the Lorenz oscillator and the nephron 

model, which exhibit oscillations with several different time scales, 

and show that the anti-correlated sequences of return times of 

synchronous motions demonstrate a higher sensitivity to measur- 

ing noise than the positively correlated series of return times of 

asynchronous oscillations. Such distinction in sensitivity to addi- 

tive noise is confirmed for all models of coupled chaotic oscillators 

considered in this study. 

2. Methods and models 

2.1. Detrended fluctuation analysis 

DFA is a variant of the correlation analysis of a data set, which 

is based on the transition to a random walk with its further root 

mean square analysis [16,17] . The algorithm includes the following 

four steps: 

(1) The construction of a random walk y ( k ) being a profile of the 

original data set x ( i ), i = 1 , . . . , N: 

y (k ) = 

k ∑ 

i =1 

[ x (i ) − 〈 x 〉 ] , (1) 

where 〈 x 〉 is the mean value. 

(2) Segmentation of y ( k ) into non-overlapping parts of fixed size n 

and linear fitting inside each part to obtain a piecewise linear 

function y n ( k ) that describes a local trend. 

(3) Computing the root mean-square fluctuation F ( n ) 

F (n ) = 

√ 

1 

N 

N ∑ 

k =1 

[ y (k ) − y n (k )] 2 . (2) 

(4) Repeating the estimates for different n and computing the scal- 

ing exponent α, which describes the power-law behavior 

F (n ) ∼ n 

α. (3) 

The value of α can be found as the slope of the dependence 

F ( n ) in the log-log plot. This quantity relates to scaling exponents 

describing the behavior of the correlation function or the spectral 

power. For complex processes with a multiscale structure of data 

sets, F ( n ) cannot be described by a simple power-law dependence 

with a single scaling exponent, and the local slopes of lg F vs. lg n 

vary depending on the size of the segment n . In this case, con- 

sideration of local scaling exponents seems preferable to a single 

quantity (global scaling exponent). 

The values of α < 0.5 quantify the anti-correlated statistics of 

the data samples x ( i ), i.e. the alternation of large and small values 

of x ( i ), when large values appear after small values and vice versa. 

Power-law correlations when large values mainly follow after large 

values and small values appear more often after small values are 

characterized by α > 0.5. The uncorrelated dynamics of the data 

set is described by α = 0.5. 

2.2. Models of two coupled oscillators 

2.2.1. Coupled Rössler systems 

Two diffusively coupled Rössler oscillators represent a bench- 

mark model of interacting nonlinear systems that produces a va- 

riety of complex dynamical regimes including regular, chaotic and 

hyperchaotic oscillations with different phase shifts between the 

signals of individual units. This model is described by six ordinary 

differential equations 

dx 1 , 2 
dt 

= −ω 1 , 2 y 1 , 2 − z 1 , 2 + γ (x 2 , 1 − x 1 , 2 ) , 

dy 1 , 2 
dt 

= ω 1 , 2 x 1 , 2 + ay 1 , 2 , 

dz 1 , 2 
dt 

= b + z 1 , 2 (x 1 , 2 − c) (4) 

The control parameters a, b and c define the dynamics of each sys- 

tem, and γ quantifies the coupling strength. The mismatch of the 

basic frequencies ω 1 = ω 0 + � and ω 2 = ω 0 - � provides non- 

identical oscillations of the interacting units. Here, we used the 

following parameter set: a = 0.15, b = 0.2, γ = 0.02, ω 0 = 1 and varied 

the parameters c and � to analyze the transitions to and between 

different types of chaotic attractors or to a hyperchaotic regime. 

The phenomenon of phase multistability in the model (4) was dis- 

cussed, e.g., in [25] , where the bifurcation mechanisms leading to 

the appearance of various attractors are described. A simplified bi- 

furcation diagram showing the main dynamical regimes discussed 
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