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a b s t r a c t 

This paper presents a simple technique to approximate fractance devices (FDs) capable of improving the 

performance of any fractional-order oscillator. The proposed technique is based on an elementary math- 

ematical tool of impedance equalization, and requires significantly lesser number of passive components 

than the existing FD approximation schemes. To compare the merit of approximated FDs with the exist- 

ing R-C ladder based FDs, a well-known fractional-order Wien-bridge oscillator is realized using both FDs 

one by one; and the corresponding results are compared exhaustively. It is observed that the fractional- 

order oscillator realized using the proposed FDs gives better performance in terms of phase-noise, figure 

of merit (FoM), total harmonic distortion (THD), settling time, peak-to-peak voltage, power dissipation, 

and hardware compactness. Authenticity and accuracy of the proposed design has been verified using 

PSpice simulation and practical implementation. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional-order calculus is a branch of mathematics dealing 

with differentiation and integration of non-integer order, and of- 

ten finds it applications in various areas of science and engineer- 

ing [1–8] . Nowadays, concept of fractional calculus is being used 

in the designing of electronic oscillators [9] ; such oscillators are 

known as fractional-order oscillators. These oscillators have some 

additional advantages over the conventional ones, such as précises 

phase and frequency control, wide range of oscillation frequency 

and more degree of freedom in system designing [10–18] . Abil- 

ity to provide controlled phase shift, increases the popularity of 

fractional oscillators in several potential areas, for example com- 

munication system [19] , medical science [20] , musical instruments 

[21] , etc. Fractional-order oscillators utilize fractance devices (FDs) 

in place of conventional capacitors and inductors. FDs are consid- 

ered as fractional energy storing elements, and can be further cate- 

gorized as fractional-order capacitor and fractional-order inductor. 

The current-voltage relations of fractional-order capacitor and in- 

ductor are defined as: 

Fractional − ordercapacitor : 
1 

C 
i = 

d αv 
d t α

(1) 

Fractional − orderinductor : 
1 

L 
v = 

d α i 

d t α
(2) 
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Unit of the fractional-order capacitor and inductor are F s α−1 

and H s α−1 respectively, in place of F and H for the conven- 

tional elements. The dimensional formulae for fractional-order ca- 

pacitor and fractional-order inductor are [ M 

−1 L −2 T ( 3+ α) I 2 ] and 

[ M L 2 T ( −3+ α) I −2 ] respectively. Unfortunately, these fractional de- 

vices are not available commercially as lumped components; how- 

ever several mathematical approximation schemes, such as contin- 

ued fraction expansion, Regular newton process and Taylor series 

expansion, can be used to realize FDs using R-C tree or ladder cir- 

cuits as shown in Fig. 1 [22–25] . 

Along with these passive realizations, some active realizations 

of the FDs are also available in literature [26] . One of the major 

drawbacks of these approximated FDs is the requirement of large 

number of passive components to realize a single FD. Some effort s 

have also been done to simulate single component FDs using vari- 

ous chemical processes [27,28] , although they are not so popular 

in the area of electrical engineering. Consequently, the R-C tree 

or ladder network based FDs are still frequently used to design 

fractional-order oscillator. 

Nowadays, power efficient and compact electronic devices are 

receiving great recognition. Unfortunately, existing fractional oscil- 

lators are neither power efficient nor compact, due to presence of 

tree or ladder network based FDs. Since the existing R-C network 

based FDs require large number of passive components; perfor- 

mance of fractional oscillators also degrade considerably in terms 

of noise, cost, and system reliability. Hence, there is a need to de- 

velop a technique to improve the energy efficiency, compactness 

and phase noise performance of any fractional-order oscillator. 
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Fig. 1. Schematic of the tree and ladder network based FDs. 

This paper is organized as follows: Section 2 presents general 

idea about the phase noise and figure of merit of an oscillator. 

New FD realization schemes suitable for fractional-order oscillators 

are proposed in Section 3 . This section also describes the merits of 

the proposed FDs over the existing R-C network based FDs. Simu- 

lation results and implementations are discussed in Section 4 . Fi- 

nally, conclusions and future scopes are discussed in Section 5 . 

2. Noise in sinusoidal oscillators 

For an electronic oscillator, noise can be categorised as ampli- 

tude noise and phase noise. A noisy signal x ( t ) with amplitude A 

and angular frequency ω can be represented as: 

x (t) = [ A o + A (t)] sin { ω o t + ϕ(t) } (3) 

where A ( t ) and ϕ( t ) are instantaneous amplitude and phase vari- 

ation generated due to amplitude and phase noise respectively. In 

most of the cases the amplitude noise can be ignored, for exam- 

ple oscillators for providing a clock signal where the amplitude is 

clipped. On the other hand, the phase noise is closely associated 

with the jitter and will therefore have direct influence on the tim- 

ing of the events, in clocked circuits [29] . Although in some appli- 

cations, amplitude as well as phase noise are equally undesirable; 

phase noise creates greater mishap as it can be easily translated to 

amplitude noise. Unlike the excess phase ϕ( t ), the effect on the in- 

stantaneous amplitude A ( t ) decays over time since oscillators have 

inherent amplitude restoring mechanisms in the oscillator circuit 

[30] . Hence phase noise is one of the major concerns in any os- 

cillatory system as it changes the frequency spectrum as well as 

timing properties of oscillator. An ideal oscillator would have local- 

ized Dirac impulse tones at discrete frequencies whereas the spec- 

trum of the perturbed oscillator is a Lorentzian at each harmonics 

[31, 32] , and high power level at adjacent frequencies. Phase noise 

is measured in dBc/Hz, and defined in the form of single-sideband 

phase noise L ( f m 

) as given below [33–34] . 

L ( f ) �10 log 10 

(
S ss ( f o + f m 

) 

P Total 

)
(4) 

where S ss ( f o + f m 

) is the oscillator power within 1 Hz bandwidth 

around offset frequency f m 

from the central frequency f o , and P Total 

is the total power of the oscillator. It must be noted that the phase 

noise depends not only upon the oscillator design, but also upon 

the power dissipated and the offset frequency. Consequently, an 

additional parameter, figure of merit (FoM) is used to analyse the 

performance of an oscillator. The FoM normalizes the phase noise 

by power and oscillation frequency and hence improvement in FoM 

is truly a result of advancement in system designing, and not sim- 

ply caused by feeding more power and frequency selection. The 

Fig. 2. Fractional-order Wien-bridge oscillator. 

FoM is represented as [35] : 

FoM �| P N | + 20 log 10 

(
f o 

f m 

)
− 10 log 10 

(
P DC 

1 mW 

)
(5) 

where f o is oscillation frequency in Hz, PN is phase noise at f m 

, and 

P DC is the consumed power. To analyse the phase noise, an exist- 

ing fractional-order Wein-bridge oscillator is taken into considera- 

tion [14] . This oscillator consists of four resistors R 1 , R 2 , R 3 , R 4 and 

two fractional capacitors C 1 , C 2 of order α and β respectively, as 

illustrated in Fig. 2 . 

Forward gain and the feed-back gain of the considered 

fractional-order Wien-bridge oscillator are given in (6) and (7) re- 

spectively. 

A = 1 + 

R 3 

R 4 

(6) 

B = 

R 1 s 
βC 2 

R 1 R 2 C 1 C 2 s (α+ β) + R 1 C 1 s α + ( R 1 + R 2 ) C 2 s β + 1 

(7) 

Since the oscillatory circuits are arranged in positive feedback 

manner, the transfer function of the considered oscillatory system 

is expressed as: 

H(s ) = 

A 

1 − AB 

= A 

{
R 1 R 2 C 1 C 2 s 

(α+ β) + R 1 C 1 s 
α + ( R 1 + R 2 ) C 2 s 

β + 1 

R 1 R 2 C 1 C 2 s (α+ β) + R 1 C 1 s α + ( R 1 + R 2 − A R 1 ) C 2 s β + 1 

}

(8) 

The oscillators do not have any input terminal and they draw 

needful excitation from noise. In any electrical circuit thermal 

noise is everlasting since it is generated by the random mo- 

tion of charge carriers. Behaviour of the thermal noise is white 

Gaussian , i.e. its spectrum is equally distributed with constant 

magnitude within the entire frequency band. This white Gaussian 

noise appears as input and provides needful excitation. Hence, 

the output of the system in s- domain will be identical to the 

system transfer function, i.e. V o (s ) = H(s ) . For R 1 = R 2 = R, C 1 = 

C 2 = C and α = β , the frequency of oscillation (FO) and condition 

of oscillation (CO) are expressed as ω o = ( 1 /RC ) 1 /α and R 3 / R 4 = 

2 { 1 + cos ( απ/ 2 ) } respectively [14] . The phase difference between 

the node voltages V C 1 and V C 2 is απ /4. For C 1 = C 2 = 1 μF s α−1 , 

R 1 = R 2 = 10 k� and α = β = 0.5 ; the CO and FO are obtained 

as R 3 = 3 . 14 R 4 , and ω o = 10 , 0 0 0 rad / s i.e. f o = 1591 . 5 Hz respec- 

tively. Now, the phase noise and FoM of the considered system is 
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