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a b s t r a c t 

The refined composite multiscale-entropy algorithm was applied to the time-dependent behavior of the 

Weierstrass functions, colored noise, and Logistic map to provide the fresh insight into the dynamics 

of these fluctuating phenomena. For the Weierstrass function, the complexity of fluctuations was found 

to increase with respect to the fractional dimension, D , of the graph. Additionally, the sample-entropy 

curves increased in an exponential fashion with increasing D . This increase in the complexity was found 

to correspond to a rising amount of irregularities in the oscillations. In terms of the colored noise, the 

complexity of the fluctuations was found to be the highest for the 1/ f noise ( f is the frequency of the 

generated noise), which is in agreement with findings in the literature. Moreover, the sample-entropy 

curves exhibited a decreasing trend for noise when the spectral exponent, β , was less than 1 and obeyed 

an increasing trend when β > 1. Importantly, a direct relationship was observed between the power-law 

exponents for the curves and the spectral exponents of the noise. For the logistic map, a correspondence 

was observed between the complexity maps and its bifurcation diagrams. Specifically, the map of the 

sample-entropy curves was negligible, when the bifurcation parameter, R , varied between 3 and 3.5. Be- 

yond these values, the curves attained non-zero values that increased with increasing R , in general. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

A variety of the sample-entropy (Sample En.) techniques have 

been proposed to study the complexity of time-series data repre- 

senting nonlinear dynamical systems [1] . One such technique is the 

ApEn algorithm [2–4] , which measures the probability that simi- 

lar sequences (for a given number of points) will remain like each 

other when an additional point is added. However, this method 

contains bias due to self-matching. To overcome this issue, the 

SampEn technique [5,6] , which excludes self-matching in the cal- 

culation, was proposed by Richman et al. [7] . Here the SampEn is 

defined as the negative natural logarithm of the conditional prob- 

ability that two sequences remain similar at the next point. 

The multiscale entropy (MSE) algorithm was proposed by Costa 

et al. [8] to calculate SampEn over a range of scales to represent 

the complexity of a time series. Importantly, the MSE algorithm 

resolved an issue with the ApEn method, which stated that the 

white noise consisted of fluctuations that were more complex than 
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those associated with the 1/ f noise [9] . Here, f is defined as the 

frequency of the generated noise, which is bounded between arbi- 

trarily small and large values. However, this result was contradic- 

tory since the 1/ f noise was thought to be more intricate in nature. 

However, the MSE technique, as proposed by Costa et al., showed 

that although the white noise was more complex at lower scales, 

the 1/ f noise possessed higher levels of complexity at larger scaling 

factors [8,10] . 

In addition, the MSE algorithm has been found to be useful 

in analyzing and modeling temporal data, such as the serrated 

flow [11,12] , during mechanical deformation, in different alloy sys- 

tems [13–15] , physiological-time series [8,10,16–19] , bearing vibra- 

tion data [20] , mechanical fault diagnosis [21] , and financial time 

series [22,23] . However, the MSE technique does have issues, such 

as problems in accuracy and validity at large scale factors [9] . To 

tackle these issues, Wu et al. [24] developed the composite mul- 

tiscale entropy (CMSE) algorithm, which can estimate the com- 

plexity more accurately but increases the chance of producing un- 

defined values. This technique has since been used to analyze 

financial-time series [25,26] . 

More recently, Wu et al. modified the CMSE algorithm slightly 

to produce what is known as the refined composite multiscale en- 
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tropy (RCMSE) algorithm [9] . In their work, they compared the 

complexity of the white and 1/f noise. In terms of accuracy, it was 

found that the RCMSE algorithm outperformed both the MSE and 

CMSE algorithms. Like its predecessors, this technique has been 

used to study the complexity of different phenomena such as phys- 

iological systems [27,28] and the intrinsic dynamics of traffic sig- 

nals [29] . 

Therefore, the goal of the present work is to use the RCMSE 

method to model and analyze the complexity of different fluctuat- 

ing phenomena. These phenomena include the colored noise, the 

Weierstrass function, and the logistic map. In terms of the colored 

noise, the current study will expand upon the studies conducted 

by [8,10,15,30] on the white and 1/ f noise, where the noise with 

spectral exponents ranging from –2 to 2 will be modeled and an- 

alyzed. Furthermore, this study will provide an innovative way to 

understand how the regularity of a fractal function changes with 

respect to its fractional dimension. This investigation also takes an 

original approach to examining the logistic map, where the com- 

plexity of its fluctuations will be examined with respect to its 

chaotic behavior. Therefore, the present work is significant since it 

advances our fundamental understanding of the above phenomena. 

2. Refined composite multiscale entropy modeling and analysis 

For this section, the methodology of [9] will be used. Given a 

discrete time series of the form, X = [ x 1 x 2 … x i … x N ], one con- 

structs the coarse-grained (averaged) time series, y τ
j,k 

, using Eq. (1) , 

which is written as: 

y τk, j = 

1 

τ

jτ+ k −1 ∑ 

i = ( j−1 ) τ+ k 
x i ; 1 ≤ j ≤ N 

τ
1 ≤ k ≤ τ (1) 

Here N is the total number of points in the original data set, 

and k is an indexing factor, which dictates at which x i one begins 

the coarse-graining procedure. Additionally, one should note that 

the coarse-grained series, y 1 
1 , 1 

, is simply the original time series, 

X . Fig. 1 gives a schematic illustration of the coarse-graining pro- 

cedure. At this point, one constructs the template vectors, y τ,m 

i 
, of 

dimension, m [8] : 

y τ,m 

i 
= 

{
y τi y τi +1 . . . . y 

τ
j . . . . y 

τ
i + m −1 

}
; 1 ≤ i ≤ N − m (2) 

Once y τ
k, j 

is constructed, the next step is to write the time se- 

ries of y τ
k 

as a vector for each scale factor, τ : 

y τk = 

{
y τk, 1 y 

τ
k, 2 . . . y 

τ
k,N 

}
(3) 

The next step in the process is to find n matching sets of dis- 

tinct template vectors. It should be noted that the previous studies 

used m = 2 as the size of the template vector [7–9] . For two vec- 

tors to match, the infinity norm, d τ,m 

jk 
, of the difference between 

them must be less than a predefined tolerance value, r . Here the 

infinity norm may be written as: 

d τ,m 

jk 
= 

∥∥y τ,m 

j 
− y τ,m 

k 

∥∥
∞ 

= max 
{∣∣y τ1 , j − y τ1 ,k 

∣∣ . . . 
∣∣y τi + m −1 , j − y τi + m −1 ,k 

∣∣} < r (4) 

Typically, r is chosen as 0.1–0.2 times the standard deviation, 

of the original data set [10] . This choice ensures that the sample 

entropy relies on the sequential ordering, and not the variance, of 

the original time series. For this study, a value of r = 0.15 σ will be 

used. 

Fig. 2 illustrates the matching process for the coarse-grained se- 

ries, y 1 
1 , j 

= X ( j ) (here k = 1) [10] . In the graph, there is the template 

sequence, { x (1), x (2), x (3)}, which matches the template sequence, 

{ x (28), x (29), x (30)}, meaning that there is a matching three- 

component template set. Here the matching points for the three- 

component templates are denoted by blue boxes in the figure. This 

calculation is, then, repeated for the next three-component tem- 

plate sequence in which a total count of matching template se- 

quences is taken. Then the entire process is repeated for all two- 

component template sequences. The number of matching two- 

and three component template sequences are again summed and 

added to the cumulative total. 

This procedure is performed for each k from 1 to τ and, then, 

the number of matching template sequences, n m 

k 
and n m +1 

k 
, is 

summed, which is written as: 

RCMSE (y , τ, m, r) = Ln 

( ∑ τ
k =1 n 

m 

k,τ∑ τ
k =1 n 

m +1 
k,τ

)
(5) 

The RCMSE value is typically denoted as the sample entropy of 

sample en. for short. As with other techniques, the RCMSE curves 

are used to compare the relative complexity of normalized time 

series [10] . However, an advantage of the RCMSE method is that 

it has a lower chance of inducing the undefined entropy, as com- 

pared to earlier algorithms [9] . As was done in previous studies [8–

10] , the sample entropy, was plotted for scale-factor values ranging 

from 1 to 20. 

3. Modeling and analysis 

3.1. Weierstrass functions 

Weierstrass functions are an example of a function, which is 

continuous but differentiable nowhere [31] . A proof of the non- 

differentiability of this function can be found in [32] , and a dis- 

cussion as to its fractal nature can be read in [33] . Typically, the 

Weierstrass function has a similar form to the following [34] : 

W (t) = 

∞ ∑ 

k =1 

e i ( γ
k t+ ϕ k ) 

γ (2 −D ) k 
(6) 

where D is the fractional dimension with 1 < D < 2, γ > 1, and 

ϕk is an arbitrary phase. Here, the real and imaginary parts of 

Eq. (6) are known as the Weierstrass cosine and sine functions, re- 

spectively. Additionally, D will be termed as the fractional dimen- 

sion to avoid technical arguments over which type of dimension, D , 

represents, such as the box-counting dimension, fractal dimension, 

or the Hausdorff-Besicovitch dimension [34] . 

Although Weierstrass functions cannot be differentiated in the 

conventional sense, they have been shown to be differentiable to 

fractional order [35–39] . Furthermore, both integrating and differ- 

entiating functions to arbitrary order involve more generalized def- 

initions, as compared to those found in the integer order calculus. 

For example, the fractional integral has been defined as [40–42] : 

c D 

−α
t f ( t ) = 

1 

�( α) 

∫ t 

c 

(
t − t ′ 

)α−1 
f 
(
t ′ 
)
dt ′ Re α > 0 (7) 

Here � is the well-known gamma function, and α is the or- 

der of the derivative, which extends across the positive reals. Ex- 

panding upon Eq. (7) , Oldham and Spanier show that the fractional 

derivative of a function, f ( t ), may be written as [43,44] : 

a D 

α
t f ( t ) = 

d n 

dt n 
D 

α−n 
t a f ( t ) 

= 

1 

�( n − α) 

d n 

dt n 

∫ t 

a 

(
t − t ′ 

)n −α−1 
f 
(
t ′ 
)
dt 

′ 
Re α > 0 

(8) 

In the spirit of the work found in [35] , we take the fractional 

integral, as defined in Eq. (7) and apply it to the righthand side (r. 

h. s.) of Eq. (6) , while taking the limit of c → –∞ (from Eq. (7) ): 
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