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a b s t r a c t 

The use of anisotropic Banach spaces has provided a wealth of new results in the study of hyperbolic 

dynamical systems in recent years, yet their application to specific systems is often technical and difficult 

to access. The purpose of this note is to provide an introduction to the use of these spaces in the study 

of hyperbolic maps and to highlight the important elements and how they work together. This is done 

via a concrete example of a family of dissipative Baker’s transformations. Along the way, we prove an 

original result connecting such transformations with expanding maps via a continuous family of transfer 

operators acting on a single Banach space. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The study of anisotropic Banach spaces on which the trans- 

fer operator associated with a hyperbolic dynamical system has 

good spectral properties has been the subject of intense activity 

during the past 15 years. Beginning with the seminal paper [13] , 

there have been a flurry of papers developing several distinct ap- 

proaches, first for smooth uniformly hyperbolic maps [3,11,33,34] , 

then piecewise hyperbolic maps [8,9,18] , and finally to hyperbolic 

maps with more general singularities, including many classes of 

billiards [20,22] and their perturbations [21] . This technique has 

also been successfully applied to prove exponential rates of mix- 

ing for hyperbolic flows, a notoriously difficult problem, following 

a similar trajectory: first to contact Anosov flows [41,50] , then to 

contact flows with discontinuities [10] and finally to billiard flows 

[7] . 

The purpose of this note is to provide a gentle introduction 

to the study of anisotropic Banach spaces via a concrete model: 

a family of dissipative Baker’s transformations. This family of 

maps provides a prototypical hyperbolic setting and allows for the 

application of transfer operator techniques without the technical 

difficulties associated with other concrete models, such as dispers- 

ing billiards. On the other hand, it avoids the full generality nec- 

essary for an axiomatic treatment of Anosov or Axiom A maps 

as found, for example, in [11,34] . Despite its simplicity, the study 

of this family of maps includes all the essential elements needed 

for the successful application of this technique to more complex 

systems: a suitable set of norms, the Lasota–Yorke inequalities 

required to prove quasi-compactness of the transfer operator, a 
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Perron–Frobenius argument for characterizing the peripheral spec- 

trum, and the approximation of distributions in the Banach space 

norm. Thus we hope it will serve as an easily accessible introduc- 

tion to the subject for those who wish to pursue this mode of anal- 

ysis in more complex systems. This note is based, in part, on intro- 

ductory lectures given at the June 2015 workshop DinAmici IV held 

in Corinaldo, Italy. 

1.1. A brief survey of anisotropic spaces 

As mentioned above, there has been a wealth of activity in the 

application of anistropic Banach spaces to the study of hyperbolic 

systems. Although they vary in their application, they have one 

feature in common: they all exploit the fact that in hyperbolic 

systems, the transfer operator improves the regularity of densi- 

ties along unstable manifolds, and its dual improves the regularity 

of test functions along stable manifolds. This differentiated treat- 

ment of stable and unstable directions is what makes these spaces 

anisotropic. 

In this section, we outline some of the principal branches of 

these effort s. Roughly, they can be divided into three groups: 

(1) The geometric approach pioneered by Liverani and 

Gouezel [33] . This approach follows from the seminal work 

mentioned above by Blank, Keller and Liverani [13] , who 

viewed the transfer operator as acting on distributions inte- 

grated against vector fields and various classes of test func- 

tions. An essential difference introduced in [33] was to in- 

tegrate against smooth test functions on stable manifolds 

only, or more generally admissible stable curves whose tan- 

gent vectors lie in the stable cone, as opposed to integrating 

over the entire phase space, thus simplifying the application 

of the method. In the smooth case, this technique was able 
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to exploit higher smoothness of the map to obtain improved 

bounds on the essential spectral radius of the transfer op- 

erator [33] , and is applied to generalized potentials in [34] . 

It has also yielded significant results on dynamical determi- 

nants and zeta functions for both maps [42,44] and flows 

[31] . 

For systems with discontinuities, integrating on stable 

curves greatly simplifies the geometric arguments required 

to control the growth in complexity due to discontinuities. 

This was implemented first for two-dimensional piecewise 

hyperbolic maps (with bounded derivatives) [18] , and then 

for various classes of billiards [20,22] and their perturbations 

[21] . It has also led to the recent proof of exponential mix- 

ing for some billiard flows [7] . This geometric approach has 

proved to be the most flexible so far in terms of the types 

of systems studied. 

(2) The Triebel-type spaces introduced by Baladi [3] . These 

spaces are based on the use of Fourier transforms to con- 

vert derivatives into multiplication operators. They exploit 

the hyperbolicity of the map by taking negative fractional 

derivatives in the stable direction and positive derivatives in 

the unstable direction. Initially, the coordinates for these op- 

erators were tied to the invariant dynamical foliations asso- 

ciated with the hyperbolic systems, and these were assumed 

to be C ∞ [3] . They were later generalized to include more 

general families of foliations (only C 1+ ε smooth and such 

that the family of foliations is invariant, not each foliation 

individually), and successfully applied to piecewise hyper- 

bolic maps [8,9] . They were also the first norms succesfully 

adapted to contact flows with discontinuities in [10] . 

(3) The Sobolev-type “microlocal spaces” of Baladi and Tsu- 

jii [11] . In some sense, these spaces are an evolution of the 

Triebel-type spaces described above. The spaces still exploit 

the hyperbolicity of the map by using Fourier transforms 

and pseudo-differential operators, taking negative deriva- 

tives in the stable direction and positive derivatives in the 

unstable direction. Now, however, the invariant foliations are 

replaced by cones in the cotangent space on which these op- 

erators act, and the operators are averaged with respect to 

an L p norm. 

Such spaces, and the semi-classical versions of Faure and 

coauthors [25] , have produced extremely strong results char- 

acterizing the spectrum of the transfer operator for smooth 

hyperbolic maps and flows [26–28] . This approach has also 

achieved the sharpest bound to date for the essential spec- 

tral radius of the transfer operator via a variational formula 

[12] , and numerous results on dynamical determinants and 

zeta functions [6] . However, they have not been applied to 

systems with discontinuities, and it seems some new ideas 

will be needed to generalize them in this direction. Refer- 

ence [5] contains a recent attempt to develop this capability. 

This is only a brief description of the types of Banach spaces 

used to study hyperbolic systems in recent years, and is by no 

means a comprehensive listing. A more thorough and nuanced 

account is contained in the recent article of Baladi [4] . In addi- 

tion, there are alternative approaches that use similar types of 

anisotropic constructions adapted to special cases. The recent work 

[30] , for example, constructs spaces using an averaged type of 

bounded variation, which is shown to be effective for a class of 

partially hyperbolic maps with a skew-product structure. 

In the present paper, we will follow the geometric approach of 

Liverani and Gouëzel described in (1) above. These spaces are the 

most concrete of the types listed above, the integrals being taken 

on stable manifolds against suitable test functions, and as such fit 

our purpose here best, which is to provide a hands-on introduction 

to the subject with as few pre-requisities as possible. 

1.2. A pedagogical example 

Before introducing the class of hyperbolic maps for which we 

will construct an appropriate anisotropic Banach space, we con- 

sider the following simpler example 1 of a contracting map of the 

interval. 

For expanding systems, the fact that the transfer operator in- 

creases the regularity of densities is well-understood. It is this 

feature which generally enables one to derive the Lasota–Yorke 

inequalities needed to prove its quasi-compactness on a suitable 

space of functions compactly embedded in L 1 with respect to some 

reference measure. Although L 1 is in general both too small and 

too large a space in the context of hyperbolic maps, it is instruc- 

tive to see that similar inequalities can be derived in the purely 

contracting case as well, and to note that the transfer operator in 

this case increases the regularity of distributions . 

Let I = [0 , 1] , and T : I � be a C 1 map satisfying | T ′ ( x )| ≤λ< 1 for 

all x ∈ I . It is a well-known consequence of the contraction mapping 

theorem that there exists a unique a ∈ I such that T (a ) = a . 

For α ∈ (0, 1], let C α denote the set of Hölder continuous func- 

tions on I with exponent α. For ϕ ∈ C α , define 

H 

α(ϕ) = sup 

x,y ∈ I 
x � = y 

| ϕ(x ) − ϕ(y ) | 
| x − y | α , and | ϕ| C α = | ϕ| C 0 + H 

α(ϕ) , 

(1.1) 
where | ϕ | C 0 = sup x ∈ I | ϕ (x ) | . Since T is C 1 , if ϕ ∈ C α , then ϕ◦T ∈ C α . 

Let ( C α) ∗ be the dual of C α . For a distribution μ∈ ( C α) ∗, we de- 

fine the action of the transfer operator L associated with T via its 

dual, 

L μ(ϕ) = μ(ϕ ◦ T ) , for all ϕ ∈ C α. 

Thus L μ ∈ (C α) ∗ as well. 

For μ∈ ( C α) ∗, define 

‖ μ‖ α = sup 

ϕ∈ C α
| ϕ| C α ≤1 

μ(ϕ) . 

The reader can check that ‖ · ‖ α satisfies the triangle inequality, 

and is a norm. 

If f ∈ C 1 ( I ), then we can identify f with the measure dμ = f dm, 

where m denotes Lebesgue measure on I . With this identification, 

C 1 ⊂ ( C α) ∗. When we regard f ∈ C 1 as an element of ( C α) ∗, we will 

write f (ϕ) = 

∫ 
I fϕ dm . 

We define B 

α to be the space ( C α) ∗ equipped with the ‖ · ‖ α
norm. Note that B 

α is a Banach space of distributions that includes 

all Borel measures on I ; this includes the point mass at a, δa . 

We will work with the spaces (B 

α, ‖ · ‖ α) and (B 

1 , ‖ · ‖ 1 ) , the 

latter of which has the same definitions as B 

α, but with α = 1 . 

For ϕ ∈ C α , n ≥ 0, define ϕ n = 

∫ 
I ϕ ◦ T n dm, recalling that m de- 

notes Lebesgue measure. 

Now fix α < 1. For ϕ ∈ C α and n ≥ 0, we estimate for μ ∈ B 

α, 

L 

n μ(ϕ) = μ(ϕ ◦ T n − ϕ n ) + μ( ϕ n ) 

≤ ‖ μ‖ α| ϕ ◦ T n − ϕ n | C α + ‖ μ‖ 1 | ϕ n | C 1 . (1.2) 

Since ϕ◦T n ∈ C α , there exists u ∈ I such that ϕ ◦ T n (u ) = ϕ n . Thus for 

x, y ∈ I , we have 

| ϕ ◦ T n (x ) − ϕ n | = | ϕ ◦ T n (x ) − ϕ ◦ T n (u ) | 
≤ | ϕ| C α | T n (x ) − T n (u ) | α ≤ λnα| ϕ| C α , 

| ϕ ◦ T n (x ) − ϕ n − ϕ ◦ T n (y ) + ϕ n | ≤ | ϕ| C αλnα| x − y | α. (1.3) 

1 This example was communicated to the author by C. Liverani some years ago 

and has served as inspiration ever since. 
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