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a b s t r a c t 

We extended the nutrient–phytoplankton–zooplankton model involving variable-order fractional differen- 

tial operators of Liouville–Caputo, Caputo–Fabrizio and Atangana–Baleanu. Variable-order fractional oper- 

ators permits model and describe accurately real world problems, for example, diffusion or spread of 

nutrients or species in different states. Particularly, we model the interaction of nutrient phytoplankton 

and its predator zooplankton. The variable-order fractional numerical scheme based on the fundamental 

theorem of fractional calculus and the Lagrange polynomial interpolation was consider. Numerical sim- 

ulation results are provided for illustrating the effectiveness and applicability of the algorithm to solve 

variable-order fractional differential equations. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional derivatives become excellent instrument for the de- 

scription of memory and hereditary properties of various materials 

and processes. Such effects are in fact neglected in models with 

classical integer-order. This can be viewed as the main advantage 

of fractional derivatives. It also plays a crucial role in the descrip- 

tion of dynamics between two different points in many other fields 

[1–11] . 

Despite of the idea of fractional derivatives and integrals can 

be considered as a generalization of corresponding standard ones, 

it is still quite a strange topic, very hard to explain. Because, un- 

like commonly used differential operators, it is not related to some 

important geometrical meaning, such as the trend of functions or 

their convexity. So, sometimes this mathematical tool could be 

judged “far from reality”. But indeed many physical phenomena 

have “intrinsic” fractional order description and so fractional or- 

der calculus is necessary in order to explain them [1] . There are 

a several number of definitions of fractional derivatives. For in- 

stance, Riemann and Liouville introduced the concept of fractional- 

order differentiation with power-law in [2,3] . Caputo and Fabrizio 

in [4] , introduced a new derivative with fractional order based on 

the exponential-law and Atangana and Baleanu suggested another 

version of fractional-order derivative which uses the generalized 

Mittag-Leffler function with strong memory as non-local and non- 

singular kernel in [5] . 
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In most cases, exact solutions of differential equations with in- 

teger, non-integer order or variable-order derivatives are very diffi- 

cult to obtain; this is the principal motivation to develop iterative 

methods or numerical techniques to solve these equations. For the 

iterative methods (Adomian decomposition method, the variational 

iteration method, fractional sub-equation method, homotopy per- 

turbation techniques, among others) [12–17] , the principal prob- 

lem are the stability and the convergence. Traditionally, Adams–

Bashforth method has been recognized as a great and powerful nu- 

merical method able to provide a numerical solution of fractional 

differential equations [18–25] . In [26] , the authors approximated 

Liouville–Caputo fractional derivatives by Chebyshev polynomials. 

Rosenfeld and Dixon in [27] developed a numerical scheme based 

on scattered data interpolation via reproducing kernel Hilbert 

spaces to solved Liouville–Caputo fractional order differential equa- 

tions. In [28] , the authors proposed a new three-step fractional 

Adams–Bashforth scheme for solving linear and nonlinear frac- 

tional order differential equations involving the Caputo–Fabrizio 

operator. Shahbazi and Javidi considered 3/8 Simpsons rule to de- 

sign a new high order predictor-corrector scheme [29] . Modifica- 

tions combining the rectangle formula, trapezoid formula, polyno- 

mial interpolation or Gauss–Lobatto quadrature can be found in 

[30,31] . In [32-33] , the authors developed a generalized version 

of Adams–Basforth method to partial differential equations involv- 

ing Laplace transform, Lagrange polynomial interpolation and the 

forward-backward scheme. Recently, in [34–36] , the authors devel- 

oped a constant-order and variable-order numerical schemes that 

combines the fundamental theorem of fractional calculus and the 

two-step Lagrange polynomial. 

https://doi.org/10.1016/j.chaos.2018.09.026 

0960-0779/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.chaos.2018.09.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.09.026&domain=pdf
mailto:jgomez@cenidet.edu.mx
https://doi.org/10.1016/j.chaos.2018.09.026


B. Ghanbari, J.F. Gómez-Aguilar / Chaos, Solitons and Fractals 116 (2018) 114–120 115 

In the biological models, interaction networks can be visual- 

ized as food-chains of species linked by trophic interactions. Phyto- 

plankton provide food for marine life, oxygen for human being and 

purify the atmosphere by consuming carbon dioxide. Neverthe- 

less, the rapid growth of phytoplankton may reduce the required 

amount of oxygen needed for the growth of other aquatic plants 

and animals. In the literature we found mathematical models to 

consider the interaction nutrient–phytoplankton–zooplankton. A 

mathematical model that describes three species food chain model 

consisting of toxin producing phytoplankton, zooplankton and fish 

population has been developed in [37] . In [38] , the authors de- 

scribed a nutrient phytoplankton model by a couple of reaction- 

diffusion equations with delay. Biological systems presents long- 

range temporal memory or long-range space interactions, for this 

reason, the use of fractional derivatives can handle efficiently the 

dynamics of a disease model and also gives information on each 

point of the model. In [11] a fractional mathematical model for the 

interaction of nutrient phytoplankton and its predator zooplankton 

was investigated numerically. The fractional derivative of Liouville–

Caputo type was used to obtain the generalization of the model. 

For solving the result fractional equations, a new numerical algo- 

rithm based on the polynomial interpolation was proposed. 

In this paper, we consider a variable-order fractional nutrient–

phytoplankton–zooplankton system [11] via Liouville–Caputo, 

Caputo–Fabrizio–Caputo and Atangana–Baleanu–Caputo fractional 

derivatives. 

2. Mathematical model 

The fractional nutrient–phytoplankton–zooplankton system 

[11] is generalized by replacing the classical derivative by the 

operator 0 D 

α(t) 
t 

0 D 

α(t) 
t x 1 (t) = α0 − ax 1 (t) − b 1 x 1 (t) x 2 (t) + c 1 x 2 (t) + c 2 x 3 (t) , 

(1a) 

0 D 

α(t) 
t x 2 (t) = b 2 x 1 (t) x 2 (t) − c 3 x 2 (t) − d 1 x 2 (t) x 3 (t) 

e + x 2 (t) 
, (1b) 

0 D 

α(t) 
t x 3 (t) = 

d 2 x 2 (t) x 3 (t) 

e + x 2 (t) 
− f x 2 (t) x 3 (t) − c 4 x 3 (t) , (1c) 

with initial conditions 

x 1 (0) = x 1 , 0 > 0 , x 2 (0) = x 2 , 0 > 0 , x 3 (0) = x 3 , 0 > 0 , 

where α0 , a, b 1 , b 2 , c 1 , c 2 , c 3 , c 4 , d 1 , d 2 , e and f are positive con- 

stants. 

In the above model x 1 ( t ) denote the concentration of nutri- 

ent, x 2 ( t ) denotes the biomass of phytoplankton which also pro- 

duces toxicant harmful to the zooplankton biomass and x 3 ( t ) de- 

note the concentration of zooplankton population, the parameters 

{ a, b 1 , b 2 , c 1 , c 2 , c 3 , c 4 , d 1 , d 2 , e, f, α0 } represents the rate of 

nutrient loss; nutrient uptake rate for the phytoplankton popu- 

lation; nutrient-phytoplankton conversion rate; nutrient recycling 

rate after the death of phytoplankton; nutrient recycling rate af- 

ter the death of zooplankton; phytoplankton mortality rate; zoo- 

plankton death rate, maximal zooplankton ingestion rate; maximal 

phytoplankton–zooplankton conversion rate; half saturation con- 

stant for a Holling type II functional response; rate of zooplankton 

decay due to toxin producing phytoplankton and the constant in- 

put nutrient concentration, respectively. More details of this model 

can be found in [11] . 

The variable-order operator 
0 
D 

α(t) 
t can be of type C 

0 
D 

α(t) 
t , 

CF C 
0 

D 

α(t) 
t or ABC 

0 
D 

α(t) 
t , called Liouville–Caputo, Caputo–Fabrizio–

Caputo or Atangana–Baleanu–Caputo fractional derivatives with 

variable-order α( t ), respectively. 

The variable-order Liouville–Caputo fractional derivative with 

power-law (C) is defined as follows [7] : 

C 
0 D 

α(t) 
t f (t) = 

1 

�(1 − α(t)) 

∫ t 

0 

( t − τ ) −α(t) ˙ f ( τ ) dτ, 0 < α(t) ≤ 1 . 

(2) 

The variable-order Caputo–Fabrizio fractional derivative with 

exponential-law in Liouville–Caputo sense (CFC) is defined as fol- 

lows [36] : 

CF C 
0 D 

α(t) 
t f (t) = 

(2 − α(t)) M(α(t)) 

2(1 − α(t)) 

∫ t 

0 

× exp 

[ 
− α(t) 

(t − τ ) 

1 − α(t) 

] 
˙ f (τ ) dτ, 0 < α(t) < 1 , 

(3) 

where M(α(t)) = 

2 
2 −α(t) 

is a normalization function. 

The variable-order Atangana–Baleanu–Caputo fractional deriva- 

tive with Mittag-Leffler (ABC) is defined as follows [5,6] 

ABC 
0 D 

α(t) 
t f (t) = 

B (α(t)) 

1 − α(t) 

∫ t 

0 

E α(t) 

[ 
− α(t) 

(t − τ ) α(t) 

1 − α(t) 

] 

× ˙ f (τ ) dτ, 0 < α(t) ≤ 1 , (4) 

where B (α(t)) = 1 − α(t) + 

α(t) 

�(α(t)) 
is a normalization function. 

Now considering the numerical scheme developed in [36] , 

we obtain numerical simulations for the nutrient–phytoplankton–

zooplankton model in Liouville–Caputo; Caputo–Fabrizio–Caputo; 

and Atangana–Baleanu–Caputo fractional derivatives with variable 

order α( t ). 

3. Numerical schemes 

3.1. Numerical scheme in Liouville–Caputo sense with variable-order 

A fractional ordinary differential equation of Liouville–Caputo 

type with variable-order can be expressed as follows: 

C 
0 D 

α(t) 
t y (t) = f (t , y (t )) . (5) 

The approximate solution of Eq. (5) is obtained as [36] 

y n +1 (t) = y (0) + 

1 

�(α(t)) 

n ∑ 

m =0 

(
h 

α(t) f (t m 

, y m 

) 

α(t)(α(t) + 1) 

((n + 1 − m ) α(t) (n − m + 2 + α(t)) − (n − m ) α(t) 

×( n − m + 2 + 2 α(t) ) ) − h 

α(t) f (t m −1 , y m −1 ) 

α(t)(α(t) + 1) 

×((n + 1 − m ) α(t)+1 − (n − m ) α(t) (n − m + 1 + α(t))) 

)
. 

(6) 

3.2. Numerical scheme in Caputo–Fabrizio–Caputo sense with 

variable-order 

Now, we have the following fractional differential equation with 

variable-order in Caputo–Fabrizio–Caputo sense 

CF C 
0 D 

α(t) 
t y (t) = f (t , y (t )) . (7) 

The numerical solution fo Eq. (7) is obtained by the following 

expression [36] 

y n +1 = y n + 

[
(2 −α(t))(1 − α(t)) 

2 

+ 

3 h 

4 

α(t)(2 −α(t)) 

]
f (t n , y n ) 

−
[

(2 − α(t))(1 − α(t)) 

2 

+ 

h 

4 

α(t)(2 − α(t)) 

]
f (t n −1 , y n −1 ) . 

(8) 
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