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a b s t r a c t 

A system of fractional differential equations involving non-singular Mittag-Leffler kernel is considered. 

This system is transformed to a type of weakly singular integral equations in which the weak singular 

kernel is involved with both the unknown and known functions. The regularity and existence of its solu- 

tion is studied. The collocation methods on discontinuous piecewise polynomial space are considered. The 

convergence and superconvergence properties of the introduced methods are derived on graded meshes. 

Numerical results provided to show that our theoretical convergence bounds are often sharp and the 

introduced methods are efficient. Some comparisons and applications are discussed. 
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1. Introduction 

Increasing the use of fractional calculations has increased the 

variety of questions and, resulted in various basic definitions for 

fractional integral and derivative. We recall that the Riemann–

Liouville definition entails physically unacceptable initial condi- 

tions [1] ; conversely for the Caputo fractional derivative, the ini- 

tial conditions are expressed in terms of integer-order derivatives 

having direct physical significance [1,2] . Few years ago, Caputo 

and Fabrizio have opened the following debate within the frac- 

tional community: is it possible to describe all non-local phenom- 

ena within the same basic kernels, namely the power kernel in- 

volved within the definition of Riemann-Liouville derivative and 

some other few basic fractional derivatives [3] . They proposed a 

non-local definition for fractional derivative. Immediately, Nieto 

and Losada found the associated integral of the Caputo-Fabrizio 

fractional operator [4] . In this respect, Atangana and Baleanu have 

introduced a fractional derivative with non-singular Mittag-Leffler 

kernel [5] . 
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The importance and application of the Mittag-Leffler kernel 

for generalized diffusion, Fokker-Planck-Smoluchowski equations 

and generalized Langevin equation can be found in the works of 

[6–8] . The corresponding tempered Mittag-Leffler memory kernel 

with b = 0 and β = 1 turns to the one parameter Mittag-Leffler 

memory kernel. Another related non-singular integral operator is 

Prabhakar operator which its properties and applications can be 

found in [9–12] . 

The definition by Atangana and Baleanu was tested with suc- 

cess in many fields including chaotic behavior, epidemiology, ther- 

mal science, hydrology, mechanical engineering and biology [5,13–

24] . 

The dynamics of many physical or biological problem can be 

modeled by a system of fractional differential equations (FDE). Us- 

ing the new definition [5] ( ABC 
0 
D 

α
t ), a system of Mittag–Leffler 

non-singular FDEs (AB type FDEs) can be described by 

ABC 
0 D 

α
t y (t) = Ay (t) + f (t) , t ∈ I := [0 , T ] 
y (0) = y 0 , 

(1) 

where A is a constant matrix of dimension ν ×ν , n ∈ N is the di- 

mension of the system, f : R → R 

ν is a known vector-valued func- 

tion, and y : R → R 

ν is the unknown function. 
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Recently, it is observed that the system (1) is more successful 

for modeling of suspension concentration distribution in turbulent 

flows than other models [25] . 

The conditions for the existence and uniqueness of the solution 

to exponential non-singular system can be found in [26] . The con- 

sistency condition 

Ay 0 + f (0) = 0 , 

is one of them. It seems that this condition is also important for 

system (1) with Mittag-Leffler non-singular kernels. This imposes 

some restriction on system (1) . However, due to the important dy- 

namics of the solutions of system (1) , it is very important to solve 

the system (1) analytically or numerically [27] . 

One of the classical method for solving integral or differential 

equations is collocation methods on piecewise polynomial spaces 

[28,29] . Recently, these methods have received more attention, 

for fractional differential equations involving classical definitions 

of fractional derivative or integrals [30–34] . Here, we investigate 

these methods for system of fractional differential equations in- 

volving new definitions of fractional derivative with non-singular 

Mittag-Leffler kernel. The aim of this paper is to implement the 

collocation method on piecewise polynomial spaces for solving the 

system 1 . The other purpose of the paper is to obtain convergence 

and superconvergence analysis for the proposed methods. 

In this paper, first we use appropriate operator to transform 

the system 1 to a system with weakly singular integral operators. 

Since the integral equations with weakly singular kernels do not 

converge rapidly, we use the graded mesh to obtain higher order 

methods. 

The structure of this paper is as follows. In Section 2 , we 

provide a preliminary definitions related to Mittag-Leffler func- 

tion and AB fractional derivative and transforming fractional dif- 

ferential equation to an integral equation with weak singular 

kernel. In Section 3 , we introduce the discontinuous piecewise 

polynomial collocation methods for solving the system 1 , in de- 

tails. In Section 4 , we obtain the regularity of the solutions. In 

Section 5 , we study a convergence analysis for proposed methods. 

In Section 6 , we obtain the super-convergence results. Finally, in 

Section 7 , we provide some numerical examples to show the ef- 

ficiency of the introduced method and to confirm the theoretical 

results. Also, we apply the method for solving diffusion equation 

and we compare the singular and the non-singular diffusion equa- 

tion. 

2. Definitions and preliminaries 

In this section, we first recall some basic definitions and results 

related to the Mittag-Leffler function [35] . Then, we recall some 

basic definitions and results related to the new non-singular frac- 

tional derivative and integral formulae [5] . 

2.1. The Mittag-Leffler function 

The Mittag-Leffler function is the cornerstone of the fractional 

calculus. Several books and excellent papers [35–37] describe the 

importance of these types of operators. The concept of Mittag- 

Leffler calculus was introduced in [5] and the integral associated 

to the non-singular fractional operator with Mittag-Leffler kernel 

was found by using the Laplace transform [24,38] . 

Throughout the paper, the symbol E α shows the one parameter 

Mittag-Leffler function [39] defined by 

E α(z) = 

∞ ∑ 

k =0 

z k 

�(αk + 1) 
, Re (α) > 0 . 

The two-parameter Mittag-Leffler function is defined as 

E α,β (z) = 

∞ ∑ 

k =0 

z k 

�(αk + β) 
, ( α, β ∈ C, Re (α) > 0 ) . 

Theorem 1 [40] . Let ρ, μ, υ, ω ∈ C, ( Re (ρ) , Re (μ) , Re (υ) > 0 ).Then, 

∫ x 

0 

(x − t) μ−1 E ρ,μ( ω(x − t) ρ ) t υ−1 dt = �(υ) x μ+ υ−1 E ρ,μ+ υ (ωx ρ ) . 

(2) 

2.2. AB type non-singular fractional derivative and integral 

We use a Sobolev space defined by 

H 

1 [ t 0 , t f ] := 

{
u ∈ L 2 [ t 0 , t f ] : 

du 

dt 
∈ L 2 [ t 0 , t f ] 

}
to define AB type fractional derivative as follow: 

Definition 2. For f ∈ H 

1 [ t 0 , t f ] and 0 < α < 1, the (left) AB frac- 

tional derivative in the Riemann-Liouville sense is defined by ( [5] ): 

ABR 
t 0 

D 

α
t f (t) = 

B (α) 

1 − α

d 

dt 

∫ t 

t 0 

f ( τ ) E α

(
−α

( t − τ ) α

1 − α

)
dτ, (3) 

and in the Caputo sense is defined by 

ABC 
t 0 

D 

α
t f (t) = 

B (α) 

1 − α

∫ t 

t 0 

df ( τ ) 

dτ
E α

(
−α

( t − τ ) α

1 − α

)
dτ, (4) 

where B ( α) is a normalization function obeying B (0) = B (1) = 1 . 

The associated fractional integral is also defined by [5] : 

AB 
t 0 

I αt f (t) = 

1 − α

B (α) 
f (t) + 

α

B (α)�(α) 

∫ t 

t 0 

f (τ )(t − τ ) α−1 dτ

= 

1 − α

B (α) 
f (t) + 

α

B (α) 
t 0 I 

α
t f (t) . (5) 

The fractional integral of (x − t 0 ) 
β is 

t 0 I 
α
t (t − t 0 ) 

β = 

�(β + 1) 

�(α + β + 1) 
(t − t 0 ) 

β+ α, β > −1 , α > 0 . 

2.3. Transforming fractional differential equation to an integral 

equation with weak singular kernel 

The Newton-Leibniz formula for AB fractional derivative and in- 

tegral is obtained in [38,41] . 

Proposition 3. For 0 < α < 1, we have [38] : (
AB 

t 0 
I αt 

ABC 
t 0 

D 

α
t 

)
f (t) = f (t) − f (t 0 ) . (6) 

From Theorem 1 , we can obtain the AB fractional derivative of 

a monomial t β , ( β > 0). 

ABC 
0 D 

α
t t 

β = 

B (α)�(β + 1) 

1 − α
t βE α, 1+ β

(
− α

1 − α
t α

)
, β > 0 , α > 0 . 

(7) 

Taking fractional integration from both side of the system (1) and 

using (6) , the system (1) can be written in the following form. (
I − 1 − α

B (α) 
A 

)
y (t) = 

α

B (α) 
AI αy (t) + y 0 + 

1 

B (α) 
( (1 − α) f (t) 

+ αI α f (t) ) . (8) 

Let E = I − 1 −α
B (α) 

A. Then, using following lemma, one can guarantee 

the invertibility of E . 
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