ARTICLE IN PRESS

Systematic and Applied Microbiology xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Systematic and Applied Microbiology

journal homepage: www.elsevier.de/syapm

Definition of two new symbiovars, sv. *lupini* and sv. *mediterranense*, within the genera *Bradyrhizobium* and *Phyllobacterium* efficiently nodulating *Lupinus micranthus* in Tunisia

Abdelhakim Msaddak^{a,1}, Mokhtar Rejili^{a,*,1}, David Durán^b, Luis Rey^b, José Manuel Palacios^b, Juan Imperial^{b,c}, Tomás Ruiz-Argüeso^c, Mohamed Mars^a

^a Research Unit Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) – Faculty of Sciences of Gabès, Erriadh, Zrig 6072, Tunisia ^b Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad

Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain

^c Instituto de Ciencias Agrarias, CSIC, 28006, Madrid, Spain

⁻ Instituto de Ciencias Agranas, CSIC, 28000, Maaria, Sp

ARTICLE INFO

Article history: Received 12 December 2017 Received in revised form 21 March 2018 Accepted 14 April 2018

Keywords: Phyllobacterium Bradyrhizobium Lupinus micranthus Phylogeny Symbiovars

ABSTRACT

In this study, a polyphasic approach was used to analyze three representative strains (LmiH4, LmiM2 and LmiT21) from a collection of six previously described strains isolated in Tunisia from root nodules of *Lupinus micranthus*. The phylogenetic analysis of the concatenated *rrs*, *recA* and *glnII* genes showed that strain LmiH4 had 100% concatenated gene sequence identity with the type strain *Bradyrhizobium reta-mae* Ro19T. Similarly, strain LmiM2 shared 100% concatenated gene sequence identity with the species *Bradyrhizobium* valentinum LmjM3T. However, strain LmiT21 showed an identical concatenated gene sequence with reference strain *Phyllobacterium sophorae* CCBAU03422T. The *recA-glnII* concatenated protein-coding genes used produced incongruent phylogenetically divergent to the *Bradyrhizobium* symbiovars defined to date, and represented two new symbiovars. Plant infection analysis revealed that the three strains showed moderate host range and symbiotic specificities.

Based on their symbiotic characteristics, we propose that the three strains isolated from *Lupinus micran*thus nodules belong to two new symbiovars, with the first denominated *lupini* within the two species *Bradyrhizobium valentinum* (type strain LmiM2) and *B. retamae* (type strain LmiH4), and the second denominated *mediterranense* within the species *P. sophorae* (type strain LmiT21).

© 2018 Elsevier GmbH. All rights reserved.

Lupinus is the largest genus in the tribe *Genisteae* within the *Fabaceae* family and has approximately 275 species [9]. The endosymbiotic bacteria of cultivated lupines have been deeply studied [3,20,35,46,53], while endosymbionts from most wild lupines have been scarcely studied. The *Lupinus* species have been reported to be nodulated by fast- and slow-growing rhizobia, although the latter are those more frequently isolated from this legume [1,3,37,40,50]. The slow-growing rhizobia effectively nodulating *Lupinus* represent species in the genus *Bradyrhizobium*, including *B. canariense* and *B. japonicum* [20,46,53], as well as *B. valentinum* [11] and *B. elkanii* [17]. The fast-growing bacteria that effectively nodulate *Lupinus* are *Ochrobactrum lupini* [50], *Phyl-*

E-mail address: rejili_mokhtar@yahoo.fr (M. Rejili).

¹ The two authors contributed equally to this work.

https://doi.org/10.1016/j.syapm.2018.04.004 0723-2020/© 2018 Elsevier GmbH. All rights reserved. *lobacterium trifolii* [52], and *Microvirga lupini* [2]. In addition, two studies have reported that *Lupinus* species could be nodulated by *Mesorhizobium* [43,47].

Lupinus micranthus is an Old World lupine species that belongs to the secondary gene pool of cultivated white lupin (*L. albus* L.) [44]. It is a wild legume broadly distributed in the Mediterranean region and generally grows on sandy loams, although it has also been found on coarse sands and heavier, calcareous soils [26]. It is mostly observed on mildly acidic to alkaline soils [7], in scrublands, and along roadsides [10].

In a previous study, we reported the remarkable diversity of *L. micranthus* root nodule symbionts in northern Tunisia [34]. These included strains from the *Bradyrhizobiaceae* (*Bradyrhizobium* spp.), *Methylobacteriaceae* (*Microvirga* spp.), and *Phyllobacteriaceae* (*Phyllobacteriae* spp.) families that contrasted with those of the rhizobial populations nodulating lupines in the Old World, includ-

Please cite this article in press as: A. Msaddak, et al., Definition of two new symbiovars, sv. *lupini* and sv. *mediterranense*, within the genera *Bradyrhizobium* and *Phyllobacterium* efficiently nodulating *Lupinus micranthus* in Tunisia, Syst. Appl. Microbiol. (2018), https://doi.org/10.1016/j.syapm.2018.04.004

^{*} Corresponding author.

2

ARTICLE IN PRESS

A. Msaddak et al. / Systematic and Applied Microbiology xxx (2018) xxx-xxx

Table 1

Percentages of the different gene sequence identities between reference Bradyrhizobium strains and L. micranthus strains (LmiM2, LmiH4).

Reference strains	LmiM2 and LmiH4 gene sequence identities					
	16S rRNA		recA		glnII	
	LmiM2	LmiH4	LmiM2	LmiH4	LmiM2	LmiH4
B. rifense CTAW71	97	97	90	91	88	88
B. cytisi CTAW11	97	97	91	91	89	88
B. ganzhouense RITF806	97	97	91	91	88	89
B. canariense BTA-1	98	98	92	92	87	88
B. lupini USDA 3051	98	98	79	80	87	88
B. betae LMG 21987	98	97	91	91	89	89
B. japonicum USDA 10	98	98	91	91	89	91
B. diazoefficiens USDA 110	98	98	90	91	88	91
B. arachidis CCBAU 051107	97	97	92	92	88	90
B. iriomotense EK05	97	97	89	89	88	87
B. manausense BR 3351	97	97	91	90	90	90
B. liaoningense LMG 18230	98	98	91	92	89	89
B. ottawaense 0099	98	98	89	89	88	89
B. yuanmingense CCBAU 10071	98	98	90	91	88	90
B. daqingense CCBAU 15774	98	98	90	90	87	89
B. denitrificans LMG 8443	97	97	88	89	87	88
B. oligotrophicum LMG 10732	79	79	89	89	85	86
B. pachyrhizi PAC48	99	99	92	93	88	91
B. ferriligni CCBAU 51502	98	97	93	93	89	91
B. elkanii USDA 76	99	99	93	94	89	91
B. erythrophlei CCBAU 53325	99	99	93	92	88	90
B. retamae Ro19	99	100	93	100	91	99
B. icense LMTR 13	99	99	94	95	92	97
B. valentinum LmjM3	99	99	97	94	93	88
B. lablabi CCBAU 23086	99	99	94	95	91	94
B. jicamae PAC68	99	99	93	93	92	94
B. paxllaeri LMTR21	99	99	92	94	91	94

ing *L. micranthus* from other Mediterranean areas nodulated mostly by *Bradyrhizobium* strains [5,11,17,20,46,53].

Therefore, the present study aimed to investigate in detail the symbiotic characteristics of three novel strains (LmiH4, LmiM2, and LmiT21) from a collection of six particular strains, four of which belonged to *Bradyrhizobium* sp. and the others to *Phyllobacterium* spp. Based on their phenotypic, genotypic (*rrs*, *recA*, *glnII*) and symbiotic characteristics (*nodC* phylogeny and nodulation phenotype on different hosts), we propose that the three representative strains belong to two new symbiovars, the first named *lupini* (including the strains *Bradyrhizobium retamae* LmiH4 and *Bradyrhizobium valentinum* LmiM2), and the second named *mediterranense* (representing strain *Phyllobacterium sophorae* LmiT21).

The *rrs*, *rec*A, *gln*II and *nod*C gene sequences of the LmiH4, LmiM2, and LmiT21 strains were obtained in a previous study [34]. Fragments for the 16S rDNA, *rec*A, *gln*II and *nod*C genes obtained from PCR products were checked for sequencing quality after getting the sequencing results. Sequences were assembled with Geneious Pro 5.6.5 and, together with relevant sequences obtained from the GenBank database, were aligned using ClustalW [6]. Phylogenetic and molecular evolutionary analyses were conducted using MEGA6 [48]. The maximum likelihood (ML) method and the Kimura two-parameter model were used for different genes and multilocus sequence analysis (MLSA) (combined sequences of *rrs*, *gln*II and *rec*A). Phylogenetic trees were bootstrapped with 1000 bootstrap replications. Selected gene sequences obtained in this study were deposited in the GenBank sequence database, and their accession numbers are shown on the trees.

Since rhizobia rRNA genes may occasionally undergo possible horizontal gene transfer or recombination, variable mutation rates and simple stochastic variation [12,16,54], and may not always accurately reflect prokaryotic phylogeny [25,31,56,58], the concatenation of housekeeping gene sequences for *glnII*, *recA*, and *rrs* was performed. The alignment of the *rrs*, *recA* and *glnII* concatenated sequences generated 2032 nucleotides, and the sequences were used to construct a tree (Fig. 1A and B). The phylogenetic

analysis confirmed the placement of the two strains LmiH4 and LmiM2 into the *Bradyrhizobium* group and that of strain LmiT21 into the *Phyllobacterium* group.

The concatenated gene sequence identity values were higher than 99% for strain LmiH4 and type strain *B. retamae* Ro19^T isolated from root nodules of *Retama monosperma* and *Retama sphaerocarpa* in Spain and Morocco [18]. Similarly, strain LmiM2 shared 100% concatenated gene sequence identity with the species *B. valentinum* LmjM3^T isolated from *Lupinus mariae-josephae* nodules in Spain [11] (Fig. 1A). Several previous studies have shown that lupines in the Old World, including Mediterranean areas, were mainly nodulated by *Bradyrhizobium* strains [5,11,17,20,46,53].

For the *Phyllobacterium* group, strain LmiT21 had an identical concatenated sequence to that of *P. sophorae* CCBAU03422^T, isolated recently from root nodules of *Sophora flavescens* in China [21], with a high bootstrap support (100%) (Fig. 1B). At the time of writing, the genus *Phyllobacterium*, described by Knösel [24], contains ten validated species: *Phyllobacterium myrsinacearum* isolated from leaf nodules of *Myrsinaceae* [32], *Phyllobacterium catacumbae* isolated from a volcanic rock [22], *Phyllobacterium trifolii* isolated from a *Trifolium repense* nodule [52], four species isolated from the rhizoplane of different plants, *P. brassicacearum*, *P. bourgognense*, *P. leguminum* and *P. ifriqiyense* [29], *P. endophyticum* isolated from nodules of *Phaseolus vulgaris* [14], *Phyllobacterium sophorae* isolated recently from root nodules of *Sophora flavescens* [21], and *P. loti*, a recently described species, isolated from nodules of *Lotus corniculatus* [41].

To create a consistent and robust position for the two strains LmiT21 and LmiM3, and for a better understanding of the length of the branches between LmiM2 and the type strain *B. valentinum* LmjM3^T, as well as between strain LmiT21 and the type strain *P. sophorae* CCBAU03422^T, the percentages of the different gene sequence identities were determined (Tables 1 and 2). No glnII sequences were available in the databases for the *Phyllobacterium* type strains, except for *P. sophorae* CCBAU03422^T.

Please cite this article in press as: A. Msaddak, et al., Definition of two new symbiovars, sv. *lupini* and sv. *mediterranense*, within the genera *Bradyrhizobium* and *Phyllobacterium* efficiently nodulating *Lupinus micranthus* in Tunisia, Syst. Appl. Microbiol. (2018), https://doi.org/10.1016/j.syapm.2018.04.004

Download English Version:

https://daneshyari.com/en/article/10157326

Download Persian Version:

https://daneshyari.com/article/10157326

Daneshyari.com