

Contents lists available at ScienceDirect

Cell Calcium

journal homepage: www.elsevier.com/locate/ceca

Data-driven modeling of mitochondrial dysfunction in Alzheimer's disease

Patrick Toglia^a, Angelo Demuro^b, Don-On Daniel Mak^c, Ghanim Ullah^{a,*}

^a Department of Physics, University of South Florida, Tampa, FL 33620, USA

^b Department of Neurobiology and Behavior and Physiology and Biophysics, University of California, Irvine, CA 92697, USA ^c Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA

ARTICLE INFO

Keywords:

Alzheimer's disease

Intracellular ß amyloid

Mitochondrial dysfunction

Ca2+ dyshomeostasis

ABSTRACT

Intracellular accumulation of oligometic forms of β amyloid (A β) are now believed to play a key role in the earliest phase of Alzheimer's disease (AD) as their rise correlates well with the early symptoms of the disease. Extensive evidence points to impaired neuronal Ca^{2+} homeostasis as a direct consequence of the intracellular A β oligomers. However, little is known about the downstream effects of the resulting Ca^{2+} rise on the many intracellular Ca²⁺-dependent pathways. Here we use multiscale modeling in conjunction with patch-clamp electrophysiology of single inositol 1,4,5-trisphosphate (IP₃) receptor (IP₃R) and fluorescence imaging of whole-cell Ca^{2} ⁺ response, induced by exogenously applied intracellular $A\beta_{42}$ oligomers to show that $A\beta_{42}$ inflicts cytotoxicity by impairing mitochondrial function. Driven by patch-clamp experiments, we first model the kinetics of IP_3R , which is then extended to build a model for the whole-cell Ca²⁺ signals. The whole-cell model is then fitted to fluorescence signals to quantify the overall Ca^{2+} release from the endoplasmic reticulum by intracellular $A\beta_{42}$ oligomers through G-protein-mediated stimulation of IP₃ production. The estimated IP₃ concentration as a function of intracellular $A\beta_{42}$ content together with the whole-cell model allows us to show that $A\beta_{42}$ oligomers impair mitochondrial function through pathological Ca²⁺ uptake and the resulting reduced mitochondrial inner membrane potential, leading to an overall lower ATP and increased production of reactive oxygen species and H_2O_2 . We further show that mitochondrial function can be restored by the addition of Ca^{2+} buffer EGTA, in accordance with the observed abrogation of A β_{42} cytotoxicity by EGTA in our live cells experiments.

1. Introduction

Alzheimer's disease (AD) is associated with increased production and/or impaired clearance of self-aggregating forms of β -amyloid (A β) [1,2]. Strong evidence indicates that soluble oligomeric A β aggregates represent the major toxic species in the etiology of AD, leading to uncontrolled elevation of cytosolic Ca²⁺ [3–11]. Proposed mechanisms of action of A β oligomers include formation of self-aggregating Ca²⁺permeable pores in the plasma membrane (PM) [12–16], alteration of the physicochemical properties of membrane lipids and proteins [17–19], and direct interaction with endogenous Ca²⁺-permeable receptor/channels [20–22].

While most studies on A β toxicity to date have focused on the effect of extracellular A β oligomers, understanding the effect of intracellular A β on cell's function is becoming increasingly relevant, substantiated by the following observations: (i) intracellular A β accumulation precedes extracellular deposition [23–25]; (ii) intracellular A β are likely to contribute in the earliest phase of the pathogenesis of AD [23,26,27]; (iii) the endoplasmic reticulum (ER) of neurons has been identified as the specific site of A β production [28]; (iv) accumulation of intracellular A β have been linked to profound deficits of long-term potentiation and cognitive dysfunction in AD mice models [29,30]; and (v) the ER membrane is the site of action for fundamental Ca²⁺ release due to opening of inositol 1,4,5-trisphosphate (IP₃) receptors (IP₃Rs) and ryanodine receptors (RyRs), regulating numerous cell's functions. Furthermore, there is compelling evidence that intracellular A β evokes the liberation of Ca²⁺ from intracellular stores [31,32,8,33].

We have previously shown that intracellular injection of $A\beta_{42}$ oligomers stimulates G-protein-mediated IP₃ production and consequently liberate Ca²⁺ from the ER through activation of IP₃Rs [32]. Here we synergistically combine multiscale modeling, patch-clamp electrophysiology of single IP₃R, and total internal reflection fluorescence (TIRF) microscopy of global Ca²⁺ signaling to show that exogenously applied intracellular $A\beta_{42}$ oligomers inflict cytotoxicity by impairing mitochondrial function. We achieve this by first developing a model for the kinetics of IP₃R, driven by single-channel patch-clamp data obtained from type 1 IP₃R in isolated nuclei of *Xenopus laevis* occytes. This simple four state model accurately reproduces the gating of IP₃R as a

https://doi.org/10.1016/j.ceca.2018.09.003

Received 20 June 2018; Received in revised form 2 September 2018; Accepted 3 September 2018 Available online 12 September 2018 0143-4160/ © 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Department of Physics, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA. *E-mail address*: gullah@usf.edu (G. Ullah).

function of its two ligands, Ca^{2+} and IP_3 . The single channel model is used to build a preliminary model for whole-cell Ca²⁺ signaling. The whole-cell model is then fitted to fluorescence traces representing global Ca²⁺ signals recorded in X. laevis oocytes in response to exogenously applied intracellular injection of $A\beta_{42}$ oligomers. This allowed us to quantify and model the overall G-protein-mediated IP₃ production and consequently the Ca²⁺ released from the ER as functions of intracellular $A\beta_{42}$ concentration ([$A\beta_{42}$]). The resulting data-driven models for IP₃ and cytosolic Ca²⁺ signals were then combined with a detailed model for mitochondrial Ca²⁺ signaling and bioenergetics to show that intracellular $A\beta_{42}$ impairs mitochondrial function due to pathological Ca²⁺ uptake and diminished mitochondrial inner membrane potential ($\Delta \Psi_{\rm m}$), resulting in overall lower ATP availability to the cell and increased production of reactive oxygen species (ROS) and [H₂O₂]. This dual theory-experiment approach allows us to investigate the extent of Ca²⁺ signaling disruption and mitochondrial dysfunction as functions of cell's intracellular $[A\beta_{42}]$. We further show that mitochondrial function is restored by the addition of Ca²⁺ buffer ethylene glycol-bis(\beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), in agreement with our experimental observations where A β_{42} cytotoxicity was abrogated by cytosolic injection of EGTA. In addition to unifying observations from two different experimental techniques across different spatiotemporal scales, from single channel to whole-cell, our study provides a testable hypothesis for $A\beta_{42}$ cytotoxicity. Moreover, this to our knowledge is the first demonstration of extracting parameters related to single channel kinetics from whole-cell Ca²⁺ signals.

2. Methods

2.1. Computational model

In the following, we describe the steps to model the intracellular Ca^{2+} signaling pathways affected by intracellular A β_{42} (Fig. S1). Intracellular $A\beta_{42}$ oligomers stimulate the production of IP₃ through PLC, which binds to IP₃Rs to release Ca²⁺ from the ER. Ca²⁺ is also released from the ER through leak channels, pumped back into the ER through sarco/ER Ca²⁺-ATPase (SERCA), and buffered by Ca²⁺ sensitive dye and other buffers. Ca²⁺ released from the ER is also buffered by mitochondria that affects the production of ATP and reactive species among other things. Models for mitochondrial function and Ca²⁺ buffers are based on our previous work [34,35] and the functional forms for Ca^{2+} leak and SERCA fluxes are adopted from [36]. To complete the computational framework for all the pathways shown in Fig. S1, we first develop a model for the gating of type-1 IP₃R in X. laevis oocytes as a function Ca^{2+} and IP_3 concentrations, based on the observations from patch-clamp electrophysiology of the channel in the absence of $A\beta_{42}$. A kinetic scheme closely reproducing the gating of IP3R is crucial for estimating the amount of IP₃ generated by $A\beta_{42}$ as the open probability (P_0) of the receptor encodes information about the available IP₃ concentration. Since the changes in cytosolic Ca^{2+} due to $A\beta_{42}$ -induced IP₃ generation are observed as fluctuations in the fluorescence of Ca²⁺sensitive dye through TIRF microscopy, we next quantify the amount of Ca²⁺ represented by the fluorescence changes. Once the relationship between the changes in fluorescence and cytosolic Ca²⁺ concentration is determined, we estimate the amount of IP₃ generated by A β_{42} . Finally, we put all these components together to estimate the amount of IP₃ generated by exogenously applied intracellular $A\beta_{42}$ and investigate its downstream effects.

2.1.1. Single Ca²⁺ channel model

Our single-channel IP₃R model is an extension of our previous work [35] and uses a previously developed method that ensures the law of mass action and detailed balance [37–39]. We refer the interested reader to these papers for details about the modeling procedure for the single IP₃R. The study in Ref. [35] modeled the gating of IP₃R as a function of Ca^{2+} only at fixed IP₃ concentration of $10 \,\mu$ M. While we

Fig. 1. Equilibrium P_o of the single IP_3R channel in *Xenopus laevis* oocytes as a function of Ca^{2+} and IP_3 concentrations. P_o at $[IP_3] = 10\,\mu M$ (black), 33 nM (blue), 20 nM (red), and 10 nM (green) as we vary $[Ca^{2+}]_i$. The symbols and lines represent experimental results [40,41] and model fits respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

proposed a seven-state Markov chain that could model both the Ca²⁺ and IP₃ dependence of IP₃R gating, we did not derive the rate equations for the model in our previous study [35]. Since IP₃ in this study is a dynamic variable that depends on the intracellular concentration of Aβ₄₂, the model developed here takes into account the explicit dependence of the channel's P_o on Ca²⁺ and IP₃ as seen in our patch-clam experiments on type-1 IP₃R in *X. laevis* oocytes [40,41] (Fig. 1). Furthermore, the four-state model developed in this work is a much simpler model that reproduces the experimental data with the same accuracy as the more complex models proposed previously. Note that each point in Fig. 1 is an average of multiple experiments for the same ligand concentrations of intracellular Ca²⁺ ([Ca²⁺]_i) and IP₃ ([IP₃]). We first write the P_o of IP₃R in terms of occupancies of gating states as

$$P_{o}([Ca^{2+}]_{i}, [IP_{3}]) = \frac{Z_{O}}{Z_{O} + Z_{C}},$$
(1)

where

$$Z_{\rm O} = \sum_{m=0}^{m_{\rm max}} \sum_{n=0}^{n_{\rm max}} {\rm KO}_{\rm mn} [{\rm Ca}^{2+}]^m_{\rm i} [{\rm IP}_3]^n,$$

and

$$Z_{C} = \sum_{m=0}^{m_{max}} \sum_{n=0}^{n_{max}} KC_{mn} [Ca^{2+}]_{i}^{m} [IP_{3}]$$

are the total occupancies of all open and all close states respectively. $\text{KO}_{mn}[\text{Ca}^{2+}]_i^m [\text{IP}_3]^n$ and $\text{KC}_{mn}[\text{Ca}^{2+}]_i^m [\text{IP}_3]^n$ are the unnormalized occupancies of an open and a close state with m Ca^{2+} and n IP_3 bound respectively. As shown below, KO_{mn} and KC_{mn} turn out to be functions of [IP₃]. We perform an exhaustive search, testing millions of combinations of states with 0–5 Ca^{2+} and 0–4 IP_3 bound, searching for the combination so that Eq. (1) gives the best fit to the P_o of the channel under optimal [IP₃] = 10 μ M (Fig. 1, black circles) according to Bayesian information criterion [42]. A model with four states gives us the best fit to the data. These states are a rest state (R) with no Ca^{2+} bound, an active state (A) with 2 Ca^{2+} bound, an open state (O) with 2 Ca^{2+} bound, and an inhibited state (I) with 5 Ca^{2+} bound. Thus,

$$\begin{split} P_{0}([Ca^{2+}]_{i}, [IP_{3}]) &= KO_{2n}[Ca^{2+}]_{i}^{2}[IP_{3}]^{n}/(KC_{0n}[Ca^{2+}]_{i}^{0}[IP_{3}]^{n} \\ &+ KO_{2n}[Ca^{2+}]_{i}^{2}[IP_{3}]^{n} + KC_{2n}[Ca^{2+}]_{i}^{2}[IP_{3}]^{n} \\ &+ KC_{5n}[Ca^{2+}]_{i}^{5}[IP_{3}]^{n}) \end{split}$$

All states have the same number of IP_3 bound, which is a consequence of constant $[IP_3]$. For clarity, we drop the subscripts from occupancy

Download English Version:

https://daneshyari.com/en/article/10157762

Download Persian Version:

https://daneshyari.com/article/10157762

Daneshyari.com