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a  b  s  t  r  a  c  t

The  evolutionarily  conserved  family  of proteins  called  caspases  are  the  main  factors  mediating  the orches-
trated  programme  of  cell  suicide  known  as  apoptosis.  Since  this  protein  family  was  associated  with  this
essential  biological  function,  the  majority  of scientific  efforts  were  focused  towards  understanding  their
molecular  activation  and  function  during  cell  death.  However,  an  emerging  body  of  evidence  has  high-
lighted a repertoire  of non-lethal  roles  within  a large  variety  of  cell  types,  including  stem  cells.  Here
we  intend  to  provide  a comprehensive  overview  of the  key role  of  caspases  as regulators  of stem  cell
properties.  Finally,  we  briefly  discuss  the  possible  pathological  consequences  of  caspase  malfunction  in
stem cells,  and the therapeutic  potential  of  caspase  regulation  applied  to  this  context.

©  2017  The  Authors.  Published  by  Elsevier  Ltd.  This  is  an  open  access  article  under  the  CC  BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. General overview of the caspase protein family

In nature, being in the wrong place often has fatal consequences.
At the cellular level, this situation normally ends with the elimi-
nation of misplaced elements via genetically encoded systems of
programmed cell death. Caspases are Cysteine-ASPartic proteASES
present in all metazoans that have been intensively studied for
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being the major regulators of programmed cell death through
apoptosis [1–8] (Fig. 1). They execute this biological function by
utilizing their protease activity over a plethora of target substrates
located in different subcellular organelles [7], which ultimately pro-
vokes a generalized collapse of all metabolic functions. Structurally,
all caspases contain one large and one small subunit that form the
catalytic pocket responsible for enzymatic function. Additionally,
some members incorporate a large pro-domain of variable compo-
sition appended to the N-terminal end. Depending on the structural
composition of the pro-domain – some of which include CAspase
Recruiting or Death Effector Domains (CARDs and DEDs) – different
adaptor complexes can interact with the several members of the
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Fig. 1. Diagram showing the evolutionary conservation of the main caspase regulators of apoptosis. The ellipsoid shape designates all caspase members included in the
apoptotic pathway, whereas the hexagons are accessory apoptotic proteins. Similar proteins across species follow the same colour scheme. The light blue region encompasses
what  are considered the apical/initiator caspase members, whereas the dark blue area sorrounds the effector/executioner caspases.

caspase family [7,8]. Historically, the caspase members have been
grossly classified as apoptotic or inflammatory, taking into account
their primary roles, but this classification does not accurately reflect
their diverse functional nature, since several caspases can partici-
pate in both of these processes, as well as others [8]. At least in the
context of apoptosis, it is more precise to classify the caspases as
initiator/apical and executioners/effector caspases, based on their
early or late activation during this process [8] (Fig. 1).

Synthesized as inactive zymogens, caspases only become fully
active after several steps of self-processing upon multimerization
[8–10]. Initiator caspases are responsible for the exponential activa-
tion of effector caspases during apoptosis [11]. Complex signalling
events arising from intracellular organelles (mainly mitochon-
dria) and/or extracellular receptors facilitate the engagement of
multimeric adaptor platforms (apoptosome, inflammasome, pid-
dosome) that promote caspase activation [8]. Conversely, caspases
are inactivated through either post-translational modifications
− mainly phosphorylation and ubiquitylation − or interactions
with modulatory proteins [6,9,10,12,13]. Stringent regulation of
caspase activation is crucial to avoid the inadvertent activation
of cell death as well as an onset of diseases [1,2,8,14]. Beyond
this well-characterized apoptotic role, recent investigations have
shown that moderate levels of caspase activation can transiently
process localized substrates in specific subcellular compartments
without causing cell death [2–6,15]. For example, it has been
reported that moderate caspase activity in neuronal dendrites is
crucial to remodel such cellular projections without causing apo-
ptosis, thus reconfiguring the network of neural connectivity [16].
These non-lethal activities are able to modify the function of bind-
ing partners and substrates, often stimulating their degradation,
but also triggering their subcellular delocalization, activation or
differential binding to other proteins. Indeed, the non-lethal cas-
pase activities can be exclusively mediated by protein–protein
interactions without the need for enzymatic function (e.g. [17]).
Importantly, non-lethal caspase activation has been shown to be
instrumental in controlling a broad range of essential cellular
processes (e.g proliferation, cell fate determination, differentia-
tion, migration, secretion, cytoskeleton remodelling [1–6,8]) in
a tissue-specific manner. Furthermore, if deregulated, they can
contribute decisively to the pathophysiology of multiple diseases

[1,3,5,8,18–24]. Although our current knowledge concerning the
biochemistry of caspase activation is quite detailed during apopto-
sis, much remains unknown in non-lethal contexts. Furthermore,
the identity of tissue specific target substrates participating in
these non-apoptotic functions, remains elusive. The elucidation of
these questions is essential to fully understand caspase biology,
and potentially develop efficient therapeutic interventions against
caspase-associated diseases.

2. Stem cells: fundamental concepts

One of the most remarkable achievements in the biology of mul-
ticellular organisms is the sophisticated variety of differentiated
cells and tissues generated from a single primordial cell through-
out development. Equally astonishing is the enduring potential for
regeneration present in most organs, which protects against the
cellular wear and tear triggered by various intrinsic or environmen-
tal insults. Both scenarios demand the presence of undifferentiated
cellular precursors with the capacity for self-renewal and differ-
entiation, known as stem cells [25,26] (Fig. 2A). In this review, we
intend to provide a comprehensive compilation of the most recent
findings that associate the non-lethal activity of caspases with the
regulation of stem cell physiology.

The self-renewing capability and the competency to acquire
multiple cell fates are the basic properties defining a stem cell. Sev-
eral types of stem cells, distinguishable by their cellular ontogeny
and differentiation potential, have been described. Embryonic
stem cells (ESCs) are present in early embryos (usually before
pre-implantation) and possess unlimited differentiation potential
(totipotent or pluripotent). They can therefore give rise to virtually
any cell type of the organism [25]. Adult or somatic stem cells retain
the ability to self-renew, but are restricted in their differentiation
potential to those cell derivatives existing within its host tissue.
Adult stem cells can show either unipotent or multipotent differ-
entiation capabilities, if they can give rise to one or several cell types
of the resident tissue, respectively [26]. Importantly, somatic stem
cells are responsible for maintaining and repairing their host tis-
sues upon demand, remaining most of the time in quiescence [26]
(Fig. 2A). The exit from quiescence (reactivation of proliferation
and differentiation) relies heavily on complex cellular interactions
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