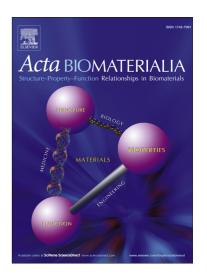
#### Accepted Manuscript

Review

Review: Calcium Phosphate Cements (CPCs) for bone substitution: chemistry, handling and mechanical properties

Jingtao Zhang, Weizhen Liu, Verena Schnitzler, Franck Tancret, Jean-Michel Bouler


PII: S1742-7061(13)00557-6

DOI: http://dx.doi.org/10.1016/j.actbio.2013.11.001

Reference: ACTBIO 2976

To appear in: Acta Biomaterialia

Received Date: 20 July 2013
Revised Date: 29 October 2013
Accepted Date: 1 November 2013



Please cite this article as: Zhang, J., Liu, W., Schnitzler, V., Tancret, F., Bouler, J-M., Review: Calcium Phosphate Cements (CPCs) for bone substitution: chemistry, handling and mechanical properties, *Acta Biomaterialia* (2013), doi: http://dx.doi.org/10.1016/j.actbio.2013.11.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

### ACCEPTED MANUSCRIPT

# Review: Calcium Phosphate Cements (CPCs) for bone substitution: chemistry, handling and mechanical properties

Jingtao ZHANG <sup>a,b</sup>, Weizhen LIU <sup>a,b</sup>, Verena SCHNITZLER <sup>a,c</sup> Franck TANCRET <sup>b</sup>.

Jean-Michel BOULER <sup>a,\*</sup>

Abstract: Since invented in the 1980s, Calcium Phosphate Cements (CPCs) have been increasingly used as bone substitutes. This article provides an overview on the chemistry, kinetics of setting, handling properties (setting time, cohesion and injectability) of CPCs for bone substitution, with a focus on their mechanical properties. Many processing parameters such as particle size, composition of cement reactants and additives, can be adjusted to control the setting process of CPCs, concomitantly influencing their handling and mechanical performance. Moreover, this review discloses the fact that although the mechanical strength of CPCs is generally low, it is not a real critical issue for their application for bone repair, an observation not often realized by many researchers and clinicians. CPCs with compressive strengths comparable to those of cortical bones can be produced through densification and/or homogenization of the cement matrix. The real limitation for CPCs appears to be their low fracture toughness and poor mechanical reliability (Weibull modulus), which so far have been rarely studied.

#### 1. Introduction

Owing to diseases and traumatic events, a few million patients worldwide need to undertake bone grafting operations each year [1]. Bone grafting, firstly established two centuries ago, is the procedure to replace missing or damaged bones with materials from either patient themselves (autograft) or donors (allograft) [2, 3].

1

<sup>&</sup>lt;sup>a</sup> Université de Nantes, INSERM UMRS 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, 1 place Alexis Ricordeau, BP 84215, 44042 Nantes Cedex 1, France

<sup>&</sup>lt;sup>b</sup> Université de Nantes, Polytech Nantes, Institut des Matériaux Jean Rouxel, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3, France

<sup>&</sup>lt;sup>c</sup> Graftys SA, Eiffel Park, Bâtiment C, 415 Rue Claude Nicolas Ledoux, Pôle d'activités d'Aix en Provence, 13854 Aix en Provence CeDex 3, France

#### Download English Version:

## https://daneshyari.com/en/article/10159246

Download Persian Version:

https://daneshyari.com/article/10159246

<u>Daneshyari.com</u>