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a b s t r a c t

Tissue-engineered vascular grafts require long fabrication times, in part due to the requirement of cells
from a variety of cell sources to produce a robust, load-bearing extracellular matrix. Herein, we propose a
design strategy for the fabrication of tubular conduits comprising collagen fiber networks and elastin-like
protein polymers to mimic native tissue structure and function. Dense fibrillar collagen networks exhib-
ited an ultimate tensile strength (UTS) of 0.71 ± 0.06 MPa, strain to failure of 37.1 ± 2.2% and Young’s
modulus of 2.09 ± 0.42 MPa, comparing favorably to a UTS and a Young’s modulus for native blood ves-
sels of 1.4–11.1 MPa and 1.5 ± 0.3 MPa, respectively. Resilience, a measure of recovered energy during
unloading of matrices, demonstrated that 58.9 ± 4.4% of the energy was recovered during loading–
unloading cycles. Rapid fabrication of multilayer tubular conduits with maintenance of native collagen
ultrastructure was achieved with internal diameters ranging between 1 and 4 mm. Compliance and burst
pressures exceeded 2.7 ± 0.3%/100 mmHg and 830 ± 131 mmHg, respectively, with a significant reduc-
tion in observed platelet adherence as compared to expanded polytetrafluoroethylene (ePTFE;
6.8 ± 0.05 � 105 vs. 62 ± 0.05 � 105 platelets mm–2, p < 0.01). Using a rat aortic interposition model, early
in vivo responses were evaluated at 2 weeks via Doppler ultrasound and CT angiography with immuno-
histochemistry confirming a limited early inflammatory response (n = 8). Engineered collagen–elastin
composites represent a promising strategy for fabricating synthetic tissues with defined extracellular
matrix content, composition and architecture.

� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The design of a tissue-engineered vascular graft to replace
diseased arteries requires consideration of mechanical, biological
and clinical factors that influence behavior in vitro and in vivo
[1–3]. While much progress has been made in determining the
key factors that contribute to the eventual success of a graft, wide-
spread acceptance of a tissue-engineered conduit as an acceptable
alternative to either an autologous artery or a vein has yet to be
achieved. Mechanical requirements for an arterial substitute
include sufficient burst pressure to prevent catastrophic failure
and long-term fatigue resistance; compliance, which approximates
that of native vessels to prevent mechanical mismatch; and
suitable suture retention to permit implantation in a manner that
tolerates hydrodynamic and mechanical forces at the anastomoses.
Biological and clinical considerations have focused on the genera-
tion of a non-fouling luminal surface to prevent thrombosis and
the minimization of inflammatory events due to either surgery or

graft properties that may contribute to early or late graft failure
[1,4].

Several groups have demonstrated the efficacy of various strat-
egies that vary from modification of existing expanded polytetra-
fluoroethylene (ePTFE)/Dacron™ grafts, acellular or cellularized
constructs, to de novo engineering of tissue substitutes that mimic
native vessels [5]. Tissue-engineered blood vessels derived from
cell-sheet tissue engineering and degradable synthetic polymer
scaffolding have demonstrated early clinical success, and continued
progress with several additional systems suggests that these tech-
nologies will continue to evolve [3,6,7]. We believe that clinical
success will ultimately require utilizing a ‘‘bottom-up’’ approach
where recapitulation of the fundamental features of the vascular
wall, incorporation of key elements that obviate thrombosis and
acute graft failure and potentially the addition of a cellular compo-
nent to provide a means for self-repair and other functional proper-
ties required for long-term graft patency [8–10]. The strategy
reported herein does not rely on the process of seeded cells to pro-
duce extracellular matrix (ECM) or bioreactor conditioning of cell-
containing constructs, which typically requires weeks to months
of process time and mandates either the use of autologous cells or
the removal of allogeneic cells [11–13]. We believe that avoiding
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these steps will shorten fabrication time, enhance tissue integrity
and improve biological responses after in vivo implantation.

Our lab and others have recently synthesized and characterized
a series of elastin-like protein polymers that consist of sequentially
repeated amino acid blocks [14–17]. With the ability to easily
modify peptide chain length, consensus repeat sequence and intro-
duce additional oligopeptide units, protein polymers can be pro-
duced with enhanced biological, thermodynamic and mechanical
properties. We have designed a series of elastin-like polypeptides
that can be fabricated as films or other geometrical constructs,
have robust mechanical properties, a high degree of resilience,
minimal thrombogenicity and long-term stability in vivo [18–26].

Collagen, a vital component of the ECM, is required both as a
load-bearing element and as a mediator of local biological re-
sponses. Electrospinning, casting gels and wet spinning have been
the mainstay for large-scale production of collagen matrices for tis-
sue engineering. Although much progress has been made in the
field of electrospinning, the use of organic solvents leads to colla-
gen denaturation [27]. Likewise, the lack of mechanical integrity
of collagen hydrogels precludes their use as a structural compo-
nent. The objective of this study was to develop a strategy for
processing dense collagen fiber networks, embedded with an elas-
tin-like protein matrix, to function as a mechanical and tissue-
mimetic analog for fabrication of an arterial substitute. Composite
structures were fabricated with defined composition and microar-
chitecture with preservation of native collagen structure.

This paper describes the rapid fabrication of protein-based
matrices of high strength and stiffness approximating native tis-
sue. Mechanical characterization of non-cross-linked matrices
illustrates the potential to modulate and tailor mechanical
strength for a variety of vascular and other soft tissue engineering
applications. We hypothesize that these composites may prove
useful for blood contacting applications given their hemocompati-
bility and in vivo stability.

2. Materials and methods

2.1. Isolation and purification of monomeric Type I collagen

Monomeric Type I rat tail tendon collagen was obtained by acid
extraction from Sprague–Dawley rats (Pel-Freez Biologicals,
Rogers, AR) following a procedure adapted from Silver and Trelstad
[28]. Briefly, rat tail tendons were extracted with the aid of auto-
claved pliers and dissolved in 10 mM HCl for 4 h at 25 �C to dis-
solve the proteinaceous components. Insoluble tissue and other
contaminants were removed by centrifugation at 30,000g at 4 �C
for 30 min with subsequent vacuum filtration through 20 lm,
0.45 lm and 0.2 lm filters. The sterile filtered collagen in HCl
was precipitated from solution by adding NaCl to a final concentra-
tion of 0.7 M. The precipitated collagen was pelleted by centrifuga-
tion, redissolved in 10 mM HCl and dialyzed first against 20 mM
phosphate buffer at room temperature, then at 4 �C against
10 mM HCl at 4 �C and finally against deionized water at 4 �C.
The collagen was then frozen and lyophilized until use.

2.2. Synthesis of a recombinant elastin-like protein polymer (ELP)

Development and production of the ELP, LysB10, has been de-
scribed elsewhere [24]. Briefly, a triblock amphiphillic copolymer
was designed to contain hydrophobic endblocks and a hydrophilic
midblock. The 75 kDa endblock comprises 33 repeats of the penta-
peptide sequence [IPAVG]5 and the 58 kDa midblock comprises 28
repeats of the sequence [(VPGAG)2VPGEG(VPGAG)2]. Flanking both
the hydrophobic, plastic endblocks and the hydrophilic, elastic
midblock, were cross-linkable amino acid sequences [KAAK],

which allow for amine-based cross-linking. Subsequent to expres-
sion in E. coli, protein was extracted and purified using hot/cold
centrifugation cycles and nucleic acid removal. Protein solutions
were then dialyzed against water and lyophilized.

2.3. Production of dense collagen networks

Monomeric rat tail tendon collagen and Lys-B10 were dissolved
in 10 mM HCl at a concentration of 2.5 mg ml–1 . Solutions were
neutralized using a gelation buffer (4.14 mg ml–1 monobasic so-
dium phosphate, 12.1 mg ml–1 dibasic sodium phosphate,
6.86 mg ml–1 TES (N-tris (hydroxymethyl) methyl-2-aminoethane
sulfonic acid sodium salt, 7.89 mg ml–1 sodium chloride, pH 8.0)
at 4 �C and were poured immediately into rectangular molds
(10 � 7 � 0.4 cm) for 24 h. Gels were subsequently placed in a fiber
incubation buffer (7.89 mg ml–1 sodium chloride, 4.26 mg ml–1

dibasic sodium phosphate,10 mM Tris, pH 7.4) at 37 �C for 48 h
to promote collagen fibrillogenesis [29]. Gels were then dried at
room temperature under a steady air stream.

2.4. Imaging of composite architecture

Optical microscopy, fluorescence microscopy, scanning electron
microscopy (SEM) and transmission electron microscopy (TEM)
were used to analyze the collagen micro- and ultrastructure prior
to and after embedding in elastin. For SEM studies, dry collagen
mats were hydrated in water for 24 h and dehydrated in serial
exchanges of ethanol–water mixtures from 30% to 100%. The sam-
ples were then critical-point-dried (Auto Samdri 815 Series A, Tou-
simis, Rockville, MD), sputter-coated with 6 nm of Pt/Pd (208HR
Cressington, Watford, UK) and imaged at an accelerating voltage
of 10 keV using a field emission scanning electron microscope
(Zeiss Supra 55 FE-SEM, Center for Nanoscale Systems, Harvard
University). For TEM studies, samples in PBS were washed in
0.1 M cacodylate buffer and fixed in glutaraldehyde. After washing
in water, samples were partially dehydrated in ethanol and stained
with uranyl acetate. Samples were then fully dehydrated in etha-
nol, embedded in resin and polymerized. Ultrathin (60–80 nm)
sections were cut using a RMC MT-7000 ultramicrotome (Boeckel-
er, Tucson, AZ). Post-staining with uranyl acetate and lead citrate
was followed by imaging using a JOEL JEM-1400 TEM (JOEL, Tokyo,
Japan) at 90 kV.

2.5. Fabrication collagen–elastin nanofibrous grafts

Lys-B10, dissolved in molecular grade water at 4 �C at a concen-
tration of 100 mg ml–1, was used to embed acellular collagen
matrices in a sandwich molding setup (Fig. 1). Briefly, collagen
matrices were dried on 0.45 lm filter membranes (Millipore,
MA), and cooled to 4 �C. Plastic shims (height 72.6 lm, Precision
Brand, IL) were placed around the collagen sheet. Cold elastin
was spread on top of the collagen matrix and a capping glass layer
was added for 20 min. The setup was warmed to 25 �C to allow the
liquid elastin to gel. The collagen–elastin composites were then re-
moved from the glass support, the long sheets were rolled on
1.3 mm or 4 mm ID stainless steel mandrels, rotated at 60 rpm at
4 �C for 10 min to allow the elastin to undergo a phase transition
to a liquid state and then rotated at 60 rpm at 25 �C for 5 min to
gel the elastin into one continuous layer.

2.6. Mechanical testing of composites

2.6.1. Planar constructs
Collagen sheets were cut using a dog-bone punch (13 mm gage

length), mounted onto a Dynamic Mechanical Thermal Analyzer V
(DMTA V, Rheometric Scientific, Piscataway, NJ) and immersed in
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