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ABSTRACT: Recently, we built an in silico model to predict the unbound brain-to-plasma concentration ratio (Kp,uu,brain), a measure of
the distribution of a compound between the blood plasma and the brain. Here, we validate the previous model with new additional
data points expanding the chemical space and use that data also to renew the model. The model building process was similar to our
previous approach; however, a new set of descriptors, molecular signatures, was included to facilitate the model interpretation from a
structure perspective. The best consensus model shows better predictive power than the previous model (R2 = 0.6 vs. R2 = 0.53, when the
same 99 compounds were used as test set). The two-class classification accuracy increased from 76% using the previous model to 81%.
Furthermore, the atom-summarized gradient based on molecular signature descriptors was proposed as an interesting new approach to
interpret the Kp,uu,brain machine learning model and scrutinize structure Kp,uu,brain relationships for investigated compounds. C© 2014 Wiley
Periodicals, Inc. and the American Pharmacists Association J Pharm Sci
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INTRODUCTION

The blood–brain barrier (BBB) is a natural defense mecha-
nism evolved to protect the delicate and sensitive brain. Conse-
quently, it poses a major hurdle for drugs targeting the central
nervous system (CNS).1 The BBB is characterized by the pres-
ence of tight junctions that impede paracellular permeation.
Additionally, the transcellular transport of more lipophilic com-
pounds is hindered by highly expressed efflux transporters, so
that the CNS is well protected from potentially harmful xeno-
biotics. P-glycoprotein, breast cancer-resistance protein, and
multidrug-resistance protein transporters are the most vital
efflux transporters at the BBB relevant for drug disposition.2

On the contrary, influx transporters are present to ensure that
compounds that are essential for the brain, for example, nutri-
ents, can pass through the membrane. Therefore, it is the in-
terplay of influx/efflux transporters at the BBB interface that
regulates the transcellular movement of molecules across the
membrane.3

A centrally acting drug has to cross the BBB in sufficient
amount to elicit the required pharmacological effect in the CNS.
For peripherally acting drugs, on the contrary, it may be ad-
vantageous to be kept out of the brain to avoid undesired side
effects. Therefore, understanding the likely brain exposure for
a compound in early discovery phase is crucial.
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Earlier, structure–brain exposure studies have largely fo-
cused on the total brain-to-plasma concentration ratio, denoted
by Kp,brain or in its logarithmic form, log BB.4 Kp,brain

5 is de-
scribed by the following equation (Eq. 1).

Kp,brain = Abrain

Cp
(1)

Abrain is the total amount of drug in the brain per unit tis-
sue weight and Cp is the total concentration of the drug
molecule in the blood plasma. One of the first attempts to-
ward QSAR modeling of log BB was published by Young
et al.6 who correlated log BB with �log P in a series of 20
antihistamine molecules. This was followed by several model-
ing attempts trying to use properties such as lipophilicity, polar
surface area (PSA), hydrogen binding, and so on to predict log
BB.7–11

However, the total amount of drug in the brain does not
necessarily reflect the relevant drug concentration that is re-
sponsible for the efficacy.5 Following the free drug hypothesis,
it has been proposed that it is the unbound or free drug concen-
tration in the brain interstitial fluid (ISF) rather than the total
drug concentration in the brain, which is driving the pharma-
codynamic response.12,13 The unbound brain-to-plasma concen-
tration ratio, Kp,uu,brain,13–15 is a way to measure the free drug
concentration in the brain in relation to the free concentration
in the blood plasma. It presents information on the passive
diffusion and active influx/efflux occurring at the BBB inter-
face and is thus a relevant measure of brain uptake of drugs.12
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Kp,uu,brain is defined by Eq. 2.13

Kp,uu,brain = Cu,brainISF

Cu,p
(2)

Cu,brainISF denotes the unbound concentration of drug in brain
ISF and Cu,p denotes the unbound drug concentration in the
blood plasma. Cu,brainISF can be determined directly in one in
vivo experiment using microdialysis. However, this is a some-
what laborious method with technical limitations, for example,
the method is not well suited to measure highly lipophilic com-
pounds. Therefore, surrogate methods have been proposed to
estimate the values of Kp,uu,brain indirectly. One alternative way
of determining Kp,uu,brain involves combining the total brain-
to-plasma concentration ratio Kp,brain measured in vivo with
the unbound volume of distribution (Vu,brain) and the unbound
fraction of drug in the plasma (fu,p) measured in vitro using
brain slices16 and equilibrium dialysis methods,17 respectively
(Eq. (3)).

Kp,uu,brain = Kp,brain

Vu,brain f u,p
(3)

Note that although Kp,uu,brain is assessed from the three di-
rectly measurable components Kp,brain, fu,p, and Vu,brain, it is
mechanistically not dependent on any of them.15

The first QSAR modeling study using Kp,uu,brain data was de-
scribed by Fridén et al.,15 based on Kp,uu,brain measurements
of 41 marketed drugs. In 2011, we built a predictive model18

by extending the Fridén dataset with a set of in-house com-
pounds. The models were validated and shown to have decent
continuous value predictions along with a good classification
performance on an external test set.

Since 2011, 99 additional compounds have been measured
in-house, which expands the chemical space covered in the ear-
lier model. Because it was shown that validating and updating
QSAR models regularly can improve the accuracy of a QSAR
model,19 we found it was time to revisit the model. Additionally,
a new set of descriptors, the signature descriptors, was found
to be a powerful tool for building QSAR models, in combination
with the support vector machine (SVM) algorithm.20 In this pa-
per, we describe the validation of our earlier model, how the
addition of the new data points improves the model and, more
importantly, how the atom-based gradients of signature de-
scriptors for SVM model can be used to identify func-
tional groups that possibly influence Kp,uu,brain in individual
compounds.

METHODS

Experimental Data

The exact procedure to determine Kp,uu,brain values was de-
scribed earlier.15 In short, the data are derived from three dif-
ferent experiments, which are combined using Eq. 3: an in vivo
determination of the brain–blood ratio (Kp,brain) in rat and the
in vitro assessment of binding properties in both brain (Vu,brain)
and plasma (fu,p). The in vivo experiment comprises a 4-h con-
stant rate infusion in Sprague–Dawley rats with up to three
drugs administered. Terminal sampling of blood and brain tis-

sue was performed under isoflurane anesthesia. The total con-
centration in the brain, Abrain, was reduced by 0.8% of the drug
plasma concentration to approximately correct for drug in the
residual blood.21 Binding to brain tissue was determined as
Vu,brain in vitro in brain slices16 and plasma protein binding
measured by equilibrium dialysis.17

Dataset

All experimental values were obtained from the corporate
database. The datasets used in the present study are described
as follows.

Dataset 1

Dataset 1 comprises the data used for the Kp,uu,brain predic-
tive model built in 2011. Dataset 1a consists of 247 com-
pounds with Kp,uu,brain data (values for Kp,brain, Vu,brain, and fu,p

are all available) used for the direct model. Datasets 1b, 1c,
and 1d comprise 506, 473, and 3235 compounds with mea-
sured values of Kp,brain, Vu,brain, and fu,p, respectively. These
datasets were employed for the indirect models. 73 compounds
(30%) were randomly picked from dataset 1a as a test set
(test set 1).18

Dataset 2

Since 2011, additional in-house data were accumulated for all
the parameters. We collected 99 compounds for which the val-
ues of Kp,brain, Vu,brain, and fu,p were available. These 99 com-
pounds comprise dataset 2, a temporal validation set for the
old Kp,uu,brain model. Further, additional data were also avail-
able for each of Kp,brain, Vu,brain, and fu,p, with 215, 736, and 2520
new data points, respectively.

Dataset 3

Dataset 3 contains the combined datasets with all avail-
able data. Dataset 3a consists of 346 compounds with known
Kp,uu,brain data. Dataset 3b, 3c, and 3d consist of 721, 1209,
and 5755 compounds with Kp,brain, Vu,brain, and fu,p values, re-
spectively. Dataset 3a was randomly divided into training and
test set in a 7:3 ratio and the procedure repeated 10 times. In
each run, the test set consisted of 104 compounds and these
104 compounds were removed from the Kp,brain, Vu,brain, and fu,p

sets (dataset 3b, 3c, and 3d) to obtain the respective training
sets.

Descriptor Sets

AZ Descriptors

This is a set of 196 physicochemical descriptors comprising
important properties such as lipophilicity, hydrogen bonding,
molecular weight, polar surface area, and so on, calculated us-
ing an in-house program.22–24

Signature Descriptors

Signature descriptors refer to atom-based descriptors that de-
scribe the extended valence of the atoms in the molecules. In
this case, a molecule is defined in terms of a set of canoni-
cal subgraphs that represent all the atoms that are at a pre-
defined distance (often called height) from the central atom
in consideration.25 Thus, each investigated molecule is asso-
ciated with a vector whose components are the occurrence of
the particular signature in the structure of the molecule. The
current study generated signatures of height between 0 and 3,
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