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ABSTRACT: Several factors with complex interactions influence the physical stability of solid
dispersions, thus highlighting the need for efficient experimental design together with robust
and simple multivariate model. Design of Experiments together with ANalysis Of VAriance
(ANOVA) model is one of the central tools when establishing a design space according to the
Quality by Design (QbD) approach. However, higher order interaction terms are often signif-
icant in these ANOVA models, making the final model difficult to interpret and understand.
As this is ordinarily the purpose of applying ANOVA, it poses an obvious problem. In the cur-
rent study, the GEneralized Multiplicative ANOVA (GEMANOVA) model is proposed as an
alternative for the ANOVA model. Two complex multivariate data sets obtained by monitoring
the physical stability of a solid dispersion with image analysis and X-ray powder diffraction
(XRPD) as responses were subjected to GEMANOVA analysis. The results showed that the
obtained GEMANOVA model was easier to interpret and understand than the additive ANOVA
model. Furthermore, the GEMANOVA model has additional advantages such as the possibility
of readily including multivariate responses (e.g., an entire spectral data set), model uniqueness,
and curve resolution abilities. © 2012 Wiley Periodicals, Inc. and the American Pharmacists
Association J Pharm Sci 102:904–914, 2013
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INTRODUCTION

Enhancing solubility and release rate of poorly water-
soluble drugs is an important formulation strategy
for the pharmaceutical industry. Many formulation
approaches have been suggested for increasing the
bioavailability of the drug, among these, solid disper-
sion formulation is one of the promising methods.1

Preventing the amorphous dispersed drug in poly-
mer matrix from recrystallization is one of the key
challenges related to solid dispersion formulations.
During the solid dispersion formulation development
phase, many factors originating from both formula-
tion as well as processing can have decisive influ-
ence of the physical stability of the drug,2,3 and the
importance of evaluating the combined influence of
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these factors has been highlighted.4,5 From a for-
mulation perspective, numerous studies have inves-
tigated and found factors such as polymer-to-drug ra-
tio, polymer type, and its molecular weight to have
decisive influence for the drug physical stability.6–8

When solid dispersion is prepared using the solvent
evaporation method, several studies have highlighted
the influence of various process parameters including
solvent evaporation rate on solid dispersion physical
stability.2,4,9 With the many factors influencing on
the solid dispersion physical stability, an emerging
recognized challenge is related to the systematic De-
sign of Experiments (DoE) planning, and minimizing
the complexity of the following multivariate modeling
step, so that understanding of the underlying phe-
nomena and latent factors influencing on the drug’s
physical stability can be maximized.

The Quality by Design (QbD) approach is be-
coming an increasingly important element in drug
development.10–12 Establishing a design space by de-
scribing relationships between input variables that
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have been identified in a risk assessment phase and
their effect on the Critical Quality Attributes (CQAs)
is one of the key elements in identifying a proper
control strategy according to the QbD approach.12,13

In the International Conference on Harmonisation
(ICH) Q8 guideline, the design space is defined as:
“The multidimensional combination and interaction
of input variables (e.g., material attributes) and pro-
cess parameters that have been demonstrated to pro-
vide assurance of quality.”14 It is well known that one
of the central tools in establishing a robust design
space is a proper DoE plan,5,13,15 and when it comes
to establishing a model based on the responses gener-
ated from the DoE, it is a commonly applied strategy
to use Multiple Linear Regression (MLR) fitting of
the DoE data set, followed by ANalysis Of VAriance
(ANOVA) on the fitted coefficients. As an example,
suppose a 23 full factorial design was generated con-
sisting of three factors a, b, and c. In the classical
ANOVA modeling, the response y is modeled using an
additive polynomial model as in Eq. 1:

y = "1a+ "2b + "3c + "4ab + "5ac + "6bc + "7abc + e

(1)

where α1 . . . α7 are the modeled coefficients and e is
the error term. As demonstrated here, the effect of the
main terms on the modeled response y can easily be
understood. However, the presence of higher order in-
teraction terms can make the model difficult to inter-
pret for two reasons. First, the higher order interac-
tion terms might be confounded. Second, suppose α1 is
positive and α7 is negative. In this case, the interpre-
tation of the modeled factor a can be confusing since
varying a alone has a positive influence on y, whereas
when a is varied together with b and c, the net ef-
fect of this part of the polynomial in Eq. 1 might well
be negative. Although Hanrahan and Lu15 advocated
the use of the additive ANOVA model to estimate the
design space, in practice, as emphasized by Smilde

et al.16 and other studies, the main factors are seldom
independent of each other. This leads to the above-
described complex interaction terms in the additive
ANOVA, making it sometimes difficult to understand
and interpret.16,17 In the ICH Q8 guideline and, for
example, in the study by Rathore,18 it is emphasized
that merely relating the input variables mathemat-
ically to CQAs when establishing a design space is
not sufficient, since an essential part is to thoroughly
understand the underlying model.14,18 Hence, there
is a need for developing models that are easy to un-
derstand in cases wherein the classical ANOVA leads
to too complex models.

When the data for the design space arise from a
DoE, it is by nature of a multi-way character, de-
scribed by e.g. Bro19 as several sets of variables mea-
sured in a crossed fashion, and hence such data are
suitable for modeling by multi-way methods.16 In a
previous work by Bro,19 it was demonstrated that
PARAllel FACtor analysis (PARAFAC) is well suited
for modeling DoE data from factorial and fractional
factorial designs. The basic PARAFAC model struc-
ture is presented as an example in Figure 1. The
Figure 1 illustrates that the DoE responses gener-
ated from a full factorial design can be approximated
by multiplication of a set of the loading vectors. For
example, suppose the same 23 full factorial design
described above consisting of three factors a, b, and
c, each varied at two levels i = 1,2, j = 1,2 and
k = 1,2. Furthermore, suppose that the generated
PARAFAC model consists of two components. A re-
sponse element xi,j,k within the multi-way array X
generated using low level of a, b and high level of c (see
Figure 1) can then be reproduced from the PARAFAC
model according to Eq. 2, which exemplifies the
model for one particular element of the multi-way
array:

X(1,1,2) = a1(1) × b1(1) × c1(2) + a2(1)

× b2(1) × c2(2) + E(1,1,2) (2)

Figure 1. An example of the basic PARAFAC model structure. The responses from the Design
of Experiment are arranged in the multi-way array X to the left. In the illustrated example,
the response colored in red in X is approximated by multiplication of the elements colored in
red belonging to loading vectors a1, b1, c1 then a2, b2, and c2 followed by summation. E is the
residual multi-way array.
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