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Quantile regression is popular because it providesmore information aswell as comprehensive interpretations. To
improve forecasting performance, this study proposes a new quantile information criterion (NQIC), on the basis
of the coefficient of variation, and expects the NQIC to reflect whether a variable is predictable. The health care
expenditure data determine the thresholds for the NQICs. The thresholds assist in forecasting the development
of information and communication technology. From the empirical analyses, the NQICs and thresholds greatly
improve the forecasting performance.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The quantile regression model offers a more complete model than
the conventional mean regression (Yu, Lu, & Stander, 2003). Studies
apply the quantile regression model to interpret various problems,
such as wages (Buchinsky, 1994; Machado & Mata, 2005; Martins
& Pereira, 2004), survival analysis (Crowley & Hu, 1977; Koenker &
Geling, 2001), financial analysis (Bassett & Chen, 2001), economic re-
search (Hendricks & Koenker, 1992; Wang, Yu, & Liu, 2013), the study
of the environment (Pandey & Nguyen, 1999), internet and communi-
cation technology (ICT) adoption (Yu, 2011), health care expenditure
(Yu, Wang, & Chang, 2011), small business performance (Seo, Perry,
Tomczyk, & Solomon, 2014), and so on.

A number of studies advance the quantile regression model to
forecasting. Granger, White, and Kamstra (1989) propose a method
for combining the variety of possible interval forecasts on the basis of
quantile regression techniques. Taylor (2007) forecasts the daily super-
market sales using exponentiallyweighted quantile regression (interval
forecasts), which outperforms traditional methods. Banachewicz and
Lucas (2008) use hidden Markov models to forecast the quantiles of

corporate default rates, which are important in financial risk manage-
ment. Gerlacha, Chen, and Chan (2011) apply Markov chain Monte
Carlo methods for the Bayesian time-varying quantile forecasting of
Value-at-Risk in financial markets. Cai, Stander, and Davies (2012) pro-
pose a Bayesian approach to quantile autoregressive time series model
estimation and forecasting and then apply the approach to currency ex-
change rate data. The empirical results show that an unequallyweighted
combining method outperforms other forecasting methodology.

Yu (forthcoming) suggests using a quantile information criterion
(QIC) to assist in forecasting. To improve forecasting performance, this
study proposes a new QIC (NQIC) to identify if a variable is predictable.
The health care expenditure data are in order to determine the thresh-
olds for theNQICs. Then, the thresholds and theNQICs intend to forecast
the ICT development.

To that end, Section 2 reviews the concepts of the quantile regres-
sionmodel. Section 3 introduces the algorithms for theNQICs and deter-
mining their thresholds. Section 4 describes the variables of the two
data sets, provides the empirical analyses for the two cases, and reveals
the results of the estimation and forecasting performance. Section 5
concludes this paper.

2. Quantile regression model

Koenker and Bassett (1978) propose quantile regression to infer the
results of the conditional functions for different quantiles. Bao, Lee, and
Saltoğlu (2006) consider that themain advantage of quantile regression
is to provide better statistics by means of the empirical quantiles.
Quantile regression can help “complete the picture” when we intend
to understand the relationship between variables for which the effects
may vary with outcome levels. In addition, quantile regression is more
forgiving than ordinary least squares in that quantile regression is
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relatively insensitive to outliers and can avoid censoring problems
(Conley & Galenson, 1998).

As Bassett and Koenker (1982) extend the median to quantile re-
gression so as to calculate various quantiles, the quantile regression
does not require any distribution assumptions regarding the popula-
tion and can estimate the parameters nonparametrically. Quantile re-
gression models the conditional quantiles, which are quantiles of the
conditional distribution of the response variable in the expression of
functions of the covariates of observations. Quantile regression models
use the least absolute deviations method to minimize the absolute
values of the errors. The model for a median linear regression is:

yi ¼ xiβθ þ εθ;i ð1Þ

where the assumption is median (εθ,i|xi) = 0. This concept is extend-
able to any quantile, such as the 75th percentile, 95th percentile, etc.
We can define the estimate by minimizing the sum of asymmetrically
weighted residuals.

min
β

X
tjyt ≥xtβ

α yt−xtβj j þ
X

tjytb xtβ
1−αð Þ yt−xtβj j

2
4

3
5 ð2Þ

where α is a parameter (0 b α b 1) that represents the size of the
quantile, and is also the quantile α of the explanatory variable that we
intend to examine in the quantile regressions. This problem does not
have an explicit form; however, linear programming methods can
solve the problem (Armstrong, Frome, & Kung, 1979). When α = 0.5,
the quantile regression is the median regression. Since on this occasion
the values of α and (1 − α) are both 0.5, the above equation changes to
∑
y

yt−xtβj j, indicating that the observations above and below themedi-

an values are of the same weights.

3. New quantile information criterion

3.1. Rationale

Not all the variables are predictable by using quantile regressions
due to their data characteristics. To identify if they are predictable, Yu
(forthcoming) proposes a quantile information criterion (QIC). This
study proposes a New QIC (NQIC) to provide a systematic method to
improve the forecasting results.

To measure the dispersion of a distribution, this study applies the
coefficient of variation as the NQIC, which is the ratio of the standard
deviation and mean of a variable (Lind, Marchal, & Wathen, 2006).
The coefficient of variation is unitless and is most useful in comparing
the variability of different data sets (Rosner, 1995). For example, Bloch
(2007) uses the coefficient of variation to test if the coefficients of two
data sets are different. Yu (forthcoming) considers that the variables
with large variations are difficult to forecast. Following these studies,
this study first intends to identify the extreme values of the coefficients
of variation of a data set to form the thresholds. Furthermore, the
thresholds are in order to determine whether the variables in the
other data set are unpredictable with the coefficients of variation lying
outside the range of the thresholds.

3.2. Algorithms

There are two data sets: the one for obtaining the thresholds is the
sample data set and the other is the target data set. Following the
above rationale, this section proposes the algorithm for calculating
the NQICs and their corresponding thresholds, and the algorithm for
forecasting on the basis of the thresholds. We list the algorithms in
Appendices 1 and 2.

The algorithm for calculating theNQICs and thresholds serves to cal-
culate the thresholds from the sample data set. Step 1 separates the data
into in-sample and out-of-sample data. The calculation starts with the
in-sample data ranging from t = 1 to d − 1 to test the out-of-sample
data of t = d. The next run moves one step further; in other words,
the calculation starts with the in-sample data from t = 1 to d to test
the out-of-sample data of t = d + 1. We continue the process until
we exhaust all the out-of-sample data.

Step 2 calculates the NQICs and then checks if the corresponding
quantile intervals can cover more than 50% of the corresponding vari-
able in the out-of-sample data. Only thosewithmore than 50% coverage
(whichwe name hits) can advance to the calculation for the thresholds.

Step 3 finds the maximum (max) from all the positive NQICs of all
the hits and calculates their standard deviation (stdev_p). Similarly, it
finds theminimum(min) from all the negativeNQICs and their standard
deviation (stdev_n). To be conservative, we narrow the range between
the minimum and maximum by one standard deviation, respectively.

In the algorithm for forecasting on the basis of the thresholds, we
also separate the data into in-sample as well as out-of-sample data for
the target data set in Step 1 of the previous algorithm. Step 2 calculates
the NQICs for the out-of-sample data.

During forecasting, if any NQICt
v falls within the thresholds, the

algorithm considers the variable v at time t predictable; otherwise

Table 1
Quantile forecasting of 1998 by using 1992–1997 health care expenditure data.

1992–1997 1998

0.05
LOG(GDP) 0.497261 1.390759 1.34671
OLD 0.013379 0.027361 0.01405
DOC −0.012920 0.031001 0.03511
IM −0.008170 −0.003110 −0.00234
LE −0.019490 0.026669 −0.01954

0.25
LOG(GDP) 1.056123 1.370417 1.12976
OLD 0.005542 0.015938 0.00192
DOC 0.025187 0.054073 0.04980
IM −0.007550 −0.003070 −0.00262
LE −0.017050 0.006608 0.01077

0.50
LOG(GDP) 1.209432 1.577748 1.33037
OLD 0.001473 0.011047 0.01145
DOC 0.044355 0.088145 0.04925
IM −0.009780 0.001800 −0.00216
LE −0.02126 0.000844 −0.00336

0.75
LOG(GDP) 1.391142 1.818118 1.52785
OLD −0.006450 0.013389 0.00933
DOC 0.031638 0.091582 0.01192
IM −0.003990 0.007852 0.00090
LE −0.030450 −0.006490 −0.00700

0.95
LOG(GDP) 1.579464 1.983476 1.92039
OLD −0.041320 0.010996 −0.00434
DOC 0.005280 0.128820 0.07328
IM −0.024830 0.010607 −0.00237
LE −0.055570 −0.015770 −0.03289

Table 2
The hits for all the years.

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

LOG(GDP) 5 4 5 5 4 3 3 5 2 4
OLD 3 3 4 3 4 3 4 5 3 3
DOC 3 4 3 3 3 3 3 5 0 1
IM 3 1 2 1 1 2 2 5 2 2
LE 3 5 3 2 3 3 4 5 2 3

Note: The numbers in bold are the hits.
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