#### Acta Ecologica Sinica 34 (2014) 204-212

Contents lists available at ScienceDirect

Acta Ecologica Sinica

journal homepage: www.elsevier.com/locate/chnaes

## Progress in the studies on the greenhouse gas emissions from reservoirs



Le Yang<sup>a,b,c</sup>, Fei Lu<sup>b,\*</sup>, Xiaoping Zhou<sup>b,c,d</sup>, Xiaoke Wang<sup>b</sup>, Xiaonan Duan<sup>b,e</sup>, Binfeng Sun<sup>b,c</sup>

<sup>a</sup> Zhejiang Forestry Academy, Hangzhou 310023, China

<sup>b</sup> State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

<sup>c</sup> University of Chinese Academy of Sciences, Beijing 100049, China

<sup>d</sup> Qinghai Academy of Environmental Science, Xining 810007, China

<sup>e</sup> Bureau of Science and Technology for Resource and Environment, Chinese Academy of Sciences, Beijing 100864, China

#### ARTICLE INFO

Article history Received 14 April 2012 Revised 16 March 2013 Accepted 25 May 2013

Keywords: Carbon dioxide Methane Diffusion Bubble Turbine

### ABSTRACT

The green credentials of hydroelectricity in terms of greenhouse-gas (GHG) emissions have been tarnished with the finding of the researches on GHG emissions from hydroelectric reservoirs in the last two decades. Substantial amounts of GHGs release from the tropical reservoirs, especially methane (CH<sub>4</sub>) from Brazil's Amazonian areas. CH<sub>4</sub> contributes strongly to climate change because it has a global warming potential (GWP) 24 times higher than carbon dioxide (CO<sub>2</sub>) on a per molecule basis over a 100year time horizon. GHGs may emit from reservoirs through four different pathways to the atmosphere: (1) diffusive flux at the reservoir surface, (2) gas bubble flux in the shallow zones of a reservoir, (3) water degassing flux at the outlet of the powerhouse downstream of turbines and spillways, and (4) flux across the air-water interface in the rivers downstream of the dams. This paper reviewed the productions and emissions of CH<sub>4</sub>, CO<sub>2</sub>, and N<sub>2</sub>O in reservoirs, and the environmental variables influencing CH<sub>4</sub> and CO<sub>2</sub> emissions were also summarized. Moreover, the paper combined with the progress of GHG emissions from Three Gorges Reservoir and proposed three crucial problems to be resolved on GHG emissions from reservoirs at present, which would be benefit to estimate the total GHG emissions from Three Gorges Reservoir accurately.

© 2014 Ecological Society of China. Published by Elsevier B.V. All rights reserved.

#### 1. Introduction

Carbon dioxide  $(CO_2)$ , methane  $(CH_4)$ , and nitrous oxide  $(N_2O)$ are the three principal greenhouse gases (GHGs) in the atmosphere, and continuously increases in atmospheric concentrations of three GHGs are closely related to global climate change [1]. The studies on the GHG emissions from reservoirs in the last two decades indicated that hydroelectricity was not a green and clean energy as expected that no GHG is emitted from the reservoir surface [2–4]. In fact, reservoirs are also an important GHG source in the terrestrial ecosystems [5,6]. According to the natural belts that reservoirs located, the global reservoirs could be divided into tropical reservoirs (e.g., reservoirs in Brazil, French Guiana, and Laos) and temperate reservoirs (e.g., reservoirs in Canada, Switzerland, and China). The global warming potential (GWP) of the GHG emissions from Brazil's reservoirs are amazing, which are even higher than that from thermal power plants with similar installed capacity [2]. For example, Curuá-Una Reservoir in Brazil emitted 3.6 times more GHGs than those would have been emitted by generating the same amount of electricity from oil [7]. However,

http://dx.doi.org/10.1016/j.chnaes.2013.05.011

1872-2032/© 2014 Ecological Society of China. Published by Elsevier B.V. All rights reserved.

GHG emissions from Canadian reservoirs are relatively low [8], which are lower than the GHG emissions compared with GHGs emitted by fossil-fuelled electricity generation. Therefore, it cannot be generalized to determine whether the development of hydroelectricity could reduce GHG emissions, which should depend on the specific situation of reservoirs. The geographic locations of reservoirs have an impact on the organic matter storage and water temperature, and influence on CO<sub>2</sub> and CH<sub>4</sub> emissions subsequently [6]. However, CH<sub>4</sub> emission fluxes from Lake Wohlen, a temperate reservoir in Switzerland, are even higher than those from tropical reservoirs [9], which cause the controversy on the development of hydroelectricity in the middle Europe region [3]. Beside latitudes, CO<sub>2</sub> emissions from reservoirs are also influenced by reservoir ages [6], wind speeds [10], pH values [11], precipitation [12], chlorophyll-a concentrations [12,13], and dissolved organic carbon in the water body [12,14], while CH<sub>4</sub> emissions from reservoirs are influenced by water depths [15], water level fluctuations [16], DO concentrations [17], water velocities [16], and wind speeds [10].

GHG emissions from reservoirs are different from the natural water bodies, such as lakes and rivers, because the impoundment of the reservoir has resulted in flooding of large areas of terrestrial and natural aquatic ecosystems. CO<sub>2</sub> and CH<sub>4</sub> are the major end



products of the microbial decomposition of flooded organic matter [17], which are transported to the atmosphere from the reservoir surface by diffusion or bubbles. Turbines and spillways are unique to the dams, and turbines are used to generate electricity by transforming potential energy of the storage water into electric energy by the rotation of vane wheel; spillways are the drainage channels to control the floods in the reservoirs. When the deep water passes through the turbines and spillways, the dissolved gas (especially  $CH_{4}$ ) in the hypolimnion before the dams would release into the atmosphere, becoming a huge CH<sub>4</sub> source, because of the abrupt change in temperature and pressure, which is called "degassing" [18]. Besides, downstream fluxes are often higher than upstream ones because of the strong disturbance to the water passing through the dams [19]; thus, the downstream emission fluxes should be paid attention. In conclusion, there are 4 pathways for GHG emissions from reservoirs, i.e., diffusive emission, ebullitive emission, degassing emission at turbines and spillways, and downstream emission [20].

The  $CO_2$  emission from reservoirs is the largest, the second is  $CH_4$  emission, and  $N_2O$  emission is the smallest. However, the GWP of the three gases is different.  $CH_4$  has a GWP 24 times higher than carbon dioxide ( $CO_2$ ) on a per molecule basis over a 100-year time horizon [3], and nitrous oxide ( $N_2O$ ) has a GWP 298 times that of  $CO_2$  [21]. Based on the studies on GHG emissions from reservoirs available, this paper reviewed the 3 GHG emissions from the tropical and temperate reservoirs through diffusion, ebullition, degassing, and downstream river. In addition, the environmental variables influencing GHG emissions were also summarized.

#### 2. CO<sub>2</sub> emissions from reservoirs

#### 2.1. CO<sub>2</sub> production in reservoirs

In a broad sense,  $CO_2$  production in a reservoir includes the carbon footprint of emissions from the use of fossil fuel, steel, and cement during the construction phase of a dam [21], which is related to the size of dam and the duration of creation. The Three Gorges Dam (TGD) is a good example, with a length of 3035 m and a height of 185 m, which lasted for 18 years to construct (1992–2009). Although there is no study on  $CO_2$  emission during the construction phase of the TGD,  $CO_2$  emission during the process cannot be ignored. Besides,  $CO_2$  production in a reservoir also includes the  $CO_2$  emission when the dam operated normally, e.g.,  $CO_2$  emission from the fossil fuel combustion by shipping,

#### Table 1

 $\ensuremath{\mathsf{CH}}_4$  and  $\ensuremath{\mathsf{CO}}_2$  emissions from the tropical reservoirs.

and  $CO_2$  emission from the turbines. Navigation and electricity generation are two important functions of the Three Gorges Reservoir (TGR), but  $CO_2$  emission has not been quantified during the two processes by far.

 $CO_2$  discussed in the paper is produced from the decomposition of the flooded organic matter under the aerobic or anaerobic conditions after the impoundment. Carbon sources in the reservoirs included the flooded organic matter in the original forests, soils, vegetations, allochthonous input from terrestrial ecosystems or the upstream rivers nearby, and photosynthetic fixation by phytoplankton at the reservoir's surface or vegetations in the drawdown areas [21–23]. The flooded organic matter would decompose into  $CO_2$  and  $CH_4$  by methanogens under the anaerobic conditions at the reservoir bottom [23,24]. In fact,  $CO_2$  could also be produced at the aerobic conditions, e.g., the decomposition of dead trees left above the water surfaces [24].

#### 2.2. CO<sub>2</sub> transport in reservoirs

CO<sub>2</sub> emission fluxes in the reservoirs mainly include the two ways, i.e., diffusion and ebullition [24]. Diffusion is the dominate way for  $CO_2$  emission from reservoirs [25], while bubbles have little contribution to CO<sub>2</sub> emission from reservoir's surface, because the solubility of CO<sub>2</sub> is large, i.e., 1 L water could dissolve 1 L CO<sub>2</sub> at the conditions of 1 atm and 25 °C; thus, CO<sub>2</sub> is easily absorbed by water during the transport from the reservoir's bottom. For example, bubbles contributed less than 1% of CO<sub>2</sub> emission from diffusion during the first years after the impoundment for Petit Saut Reservoir, French Guiana [23]; the CO<sub>2</sub> diffusive emission from Brazil's Balbina Reservoir is 2450 Gg C  $a^{-1}$ , while the CO<sub>2</sub> ebullitive emission is only about 0.02 Gg C  $a^{-1}$  [26]. According to Table 1, bubbles are not the important way to transport CO<sub>2</sub> in tropical reservoirs, and only the CO<sub>2</sub> diffusive fluxes are studied in temperate reservoirs (Table 2), probably because the frequency of bubbles and CO<sub>2</sub> concentrations in bubbles are low and even could be ignored in temperate reservoirs.

#### 2.3. Influences of turbines and spillways on CO<sub>2</sub> emission

The intakes of turbines and spillways often locate in the dozens of meters depth below the water surface, where have remarkable higher pressure than the atmospheric pressure. The dissolved  $CO_2$  in the hypolimnion would be released into the atmosphere when the water passes through the turbines and spillways because

| Location      | Reservoir name | Age (a) | Diffusive flux (mg $m^{-2} d^{-1}$ ) |                 | Bubbling flux $(mg m^{-2} d^{-1})$ |                 | Degassing (Tg C y <sup>-1</sup> ) |                 | Downstream river (mg m <sup>-2</sup> d <sup>-1</sup> ) |                 | Reference  |
|---------------|----------------|---------|--------------------------------------|-----------------|------------------------------------|-----------------|-----------------------------------|-----------------|--------------------------------------------------------|-----------------|------------|
|               |                |         | CO <sub>2</sub>                      | CH <sub>4</sub> | CO <sub>2</sub>                    | CH <sub>4</sub> | CO <sub>2</sub>                   | CH <sub>4</sub> | CO <sub>2</sub>                                        | CH <sub>4</sub> |            |
| French Guiana | Petit Saut     | 1-10    | -440 to 16280                        | 10-3200         | Ignore                             | 11.2-800        | 5-30                              | 5-40            | 41,800                                                 | 1440            | [23]       |
| Panama        | Gatun Lake     | 84      |                                      | 10.7            |                                    | 526.3           |                                   |                 |                                                        |                 | [27]       |
| Brazil        | Miranda        |         | 4389                                 | 130.35          | 0.25                               | 23.85           |                                   |                 |                                                        |                 | [28]       |
|               | Três Marias    |         | 1117                                 | 31.85           | 3.76                               | 164.5           |                                   |                 |                                                        |                 | [28]       |
|               | Barra Bonita   |         | 3986                                 | 16.95           | 0.13                               | 3.95            |                                   |                 |                                                        |                 | [28]       |
|               | Segredo        |         | 2695                                 | 7               | 0.07                               | 1.8             |                                   |                 |                                                        |                 | [28]       |
|               | Xingó          |         | 6138                                 | 29.3            | 0.05                               | 10.75           |                                   |                 |                                                        |                 | [28]       |
|               | Samuel         | 4-5     | 7448                                 | 87.55           | 0.5                                | 16.5            | 0.052-0.076                       | 65,700          | 192                                                    |                 | [19,24,28] |
|               | Tucuruí        | 8-9     | 8475                                 | 101.55          | 0.1 to 0.2                         | 7.85            | 1.67                              |                 |                                                        |                 | [25,28,29] |
|               | Itaipu         | 8       | 171                                  | 10.15           |                                    | 0.55            | 0.31                              |                 |                                                        |                 | [28,29]    |
|               | Serra da Mesa  |         | 2645                                 | 24.6            | 1.7                                | 88.65           | 0.21                              |                 |                                                        |                 | [28,29]    |
|               | Balbina        | 18      | 13,845                               | 193             | 0                                  | 13              | 0.081                             | 0.065           | 18,000                                                 | 28.4            | [26,30]    |
|               | Curuá-Una      | 13      |                                      | 36              |                                    | 77              | 0.022                             |                 |                                                        |                 | [7]        |
| Laos          | Nam Ngum       | 28      | -38.9 to -5.0                        | 0.07-0.4        |                                    |                 | 0                                 |                 |                                                        |                 | [31]       |
|               | Nam Leuk       | 10      | -19.4 to 70.0                        | 0.5-7.9         |                                    |                 | $7	imes 10^{-5}$                  |                 |                                                        |                 | [31]       |
|               | Nam Theun 2    | 1       | 22.1                                 | 19.2            |                                    | 40              |                                   |                 |                                                        |                 | [32]       |

Download English Version:

# https://daneshyari.com/en/article/10179840

Download Persian Version:

https://daneshyari.com/article/10179840

Daneshyari.com