
J. Math. Pures Appl. 105 (2016) 662–723

Contents lists available at ScienceDirect

Journal de Mathématiques Pures et Appliquées

www.elsevier.com/locate/matpur

Local well-posedness of the three dimensional compressible 

Euler–Poisson equations with physical vacuum

Xumin Gu a, Zhen Lei b,∗

a Department of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, 
PR China
b School of Mathematical Sciences, LMNS and Shanghai Key Laboratory for Contemporary Applied 
Mathematics, Fudan University, Shanghai 200433, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2014
Available online 1 December 2015

MSC:
35Q35
35A09
35B30
76N10
76X05

Keywords:
Euler–Poission
Physical vacuum
Well-posedness
Two and three dimensions

This paper is concerned with the three dimensional compressible Euler–Poisson 
equations with moving physical vacuum boundary condition. This fluid system is 
usually used to describe the motion of a self-gravitating inviscid gaseous star. The 
local existence of classical solutions for initial data in certain weighted Sobolev 
spaces is established in the case that the adiabatic index satisfies 1 < γ < 3.
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r é s u m é

Dans cet article on considère les équations d’Euler–Poisson tridimensionnelles 
compressibles avec conditions aux bords correpondant à un vide physique en 
mouvement. Ce système de fluide sert souvent à décrire le mouvement d’une étoile 
gazeuse non visqueuse avec un champ gravitationnel. On établit l’existence locale 
des solutions classiques dans certains espaces de Sobolev, pour des problèmes avec 
données initiales, dans le cas où l’indice adiabatique satisfait 1 < γ < 3.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Model and physical vacuum

The motion of a self-gravitating inviscid gaseous star in the universe can be described by the following 
free boundary problem for the compressible Euler equations coupled with the Poisson equation:

ρt + ∇η · (ρu) = 0 in Ω(t), (1.1a)

ρ[ut + u · ∇ηu] + ∇P = ρ∇ηφ in Ω(t), (1.1b)
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−Δηηφ = 4πgρ in Ω(t), (1.1c)

ν(Γ(t)) = u · n(t) on Γ(t), (1.1d)

(ρ, u) = (ρ0, u0) in Ω(0), (1.1e)

η = (η1, η2, η3) denotes the spatial coordinate in R3. The open, bounded domain Ω(t) ⊂ R
3 denotes the 

changing domain occupied by the gas. Γ(t) := ∂Ω(t) denotes the moving vacuum boundary, ν(Γ(t)) denotes 
the velocity of Γ(t), and n(t) denotes the exterior unit normal vector to Γ(t). The density of gas ρ(η, t) > 0
in Ω(t) and ρ = 0 in R3 \Ω(t). u(η, t) denotes the Eulerian velocity field, P (η, t) denotes the scalar pressure, 
φ(η, t) is the potential function of the self-gravitational force, and g is the gravitational constant. We consider 
a polytropic gas star, then the equation of state is given by:

P = Cγρ
γ for γ > 1, (1.2)

where Cγ is the adiabatic constant. We set both g and Cγ to be unity. We refer the readers to [3,10] for 
more details of the related background on this system.

The sound speed of equations (1.1) is given by c :=
√

∂P/∂ρ, and N denotes the outward unit normal 
to the initial boundary Γ := ∂Ω(0), then the condition

−∞ <
∂c20
∂N

< 0 on Γ (1.3)

defines a “physical vacuum” boundary, where c0(·) = c(·, 0). This definition of physical vacuum was moti-
vated by the case of the Euler equations with damping studied in [36,39]. For more details and the physical 
background of this concept, please see [21,22,36,38,39,54].

The physical vacuum condition (1.3) is equivalent to the requirement that

∂ργ−1
0

∂N
< 0 on Γ. (1.4)

This condition is necessary for the gas particles on the boundary to accelerate. Since ρ0 > 0 in Ω, (1.4)
implies that for some positive constant C, when x ∈ Ω is close enough to the vacuum boundary Γ, then

ργ−1
0 (x) ≥ Cdist(x,Γ). (1.5)

The physical vacuum boundary condition shows that the one order derivative of ργ−1
0 has a jump on the 

vacuum boundary. This regularity is the main difficulty for establishing well-posedness theory for the free 
boundary problem. The condition (1.5) also describes density’s decay behavior from inside domain to the 
vacuum interface. We can describe general decay behavior by

cα0 ≥ Cdist(x,Γ).

For 0 < α ≤ 1, local well-posedness is proved for the compressible Euler equations with damping in [39]. 
In this case, ργ−1

0 is smooth in the whole space, the degeneracy behavior is quite different from the physical 
vacuum case and the analysis for the case 0 < α ≤ 1 is much simpler. For α > 2 or 1 < α < 2, it is 
conjectured that the problem is ill-posedness. More details can be found in [22, Section V].

When the physical vacuum boundary condition is assumed, as we explained before, the compressible 
Euler equations become a degenerate and characteristic hyperbolic system, then the classical theory of 
hyperbolic systems cannot be directly applied. The local existence theory of classical solutions featuring the 
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