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Given a smooth simply connected planar domain, the area is bounded away from zero in 
terms of the maximal curvature alone. We show that in higher dimensions this is not true, 
and for a given maximal mean curvature we provide smooth embeddings of the ball with 
arbitrary small volume.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Étant donné un domaine planaire simplement connexe lisse, l’aire est bornée loin de zéro 
en termes de la seule courbure maximale. Nous montrons que pour des dimensions plus 
élevées ce n’est pas vrai, et nous fournissons, pour un maximum donné de la courbure 
moyenne, des plongements lisses de la boule avec un petit volume arbitraire.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

According to a classical result [3,14], for any smooth simple planar curve γ , if the curvature κ is bounded from above 
by some positive constant M , then the curve γ encloses a bounded simply connected domain � that contains a disk of 
radius M−1. In particular, see [12], if �∗ is a disk having same measure as �, the following inequality holds true

‖κ‖L∞(∂�) ≥ ‖κ‖L∞(∂�∗) (1)

or equivalently

‖κ‖2
L∞(∂�) Area(�) ≥ π,

equality holding in both cases if and only if � is a disk.
Very recently, such inequalities have been generalized to other L p norm of the curvature. More precisely, for p = 2 (see 

[2,4,8]), and for p ≥ 1 (see [5]) it holds

‖κ‖L p(∂�) ≥ ‖κ‖L p(∂�∗)
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or equivalently

‖κ‖2
Lp(∂�) Area(�)

p−1
p ≥ 22/pπ(p+1)/p,

equality holding again in both cases if and only if � is a disk.
In this short note, we consider the 3-dimensional case. We replace the simply connected planar domain by sets diffeo-

morphic to balls in R3, and the planar curvature κ by the mean curvature H of the boundary. If by S(·) and V (·) we denote 
the surface area and the volume, respectively, our main result then reads as follows.

Theorem 1.1. For any ε > 0 there exists �ε ⊂ R
3 , diffeomorphic to the unit ball, with smooth C1,1 boundary, such that

‖H‖L∞(∂�ε) ≤ 1, |S(�ε) − 8π| ≤ ε, and V (�ε) ≤ ε.

If �∗ denotes the ball having the same volume as �, a first consequence is as follows.

Corollary 1.2. In the class of C1,1 subsets of R3 diffeomorphic to balls for all 2 < p ≤ ∞, we have

inf
{‖H‖L p(∂�) : V (�) = 1

} = 0. (2)

In particular, for all 2 < p ≤ ∞, there exists a C1,1 set � ⊂R
3 , diffeomorphic to the ball �∗, such that

‖H‖L p(∂�) < ‖H‖L p(∂�∗).

Notice that ‖H‖L2 is a very special case since it corresponds to the Willmore energy (invariant under dilation), which 
is indeed minimal on balls [16]. The case p = 2 is also a threshold case since ‖H‖Lp , for p < 2, scales under dilation as a 
positive power of the volume. Under volume constraint, ‖H‖Lp is in fact bounded away from zero for all 1 ≤ p < 2, even if 
the optimal lower bounds are still unknown, see [9,15].

Our interest in this kind of inequalities is also due to a question arisen in [11,13] in relation to estimates for Laplacian 
eigenvalue with Robin boundary conditions.

For any given α > 0, consider the eigenvalue problem{ −�u = λu in �
∂u

∂ν
= αu on ∂�.

(3)

By λ(�, α) we denote the greatest (negative) λ such that (3) admits a nontrivial solution, namely:

λ(�,α) = max

⎧⎨⎩α

∫
∂�

v2 −
∫
�

|∇v|2 : v ∈ H1(�),

∫
�

v2 = 1

⎫⎬⎭ .

It has been conjectured for long time [1] that balls achieve the greatest eigenvalue among sets of given measure. Indeed 
they are local maximizers in any dimension (see [6]) and global maximizers in 2 dimensions for α small enough (see [7]). 
However, in [7] the authors also show that large values of α provides the annulus as a counterexample to the conjecture.

In [11,13], this was clarified showing that whenever � ⊂ R
n is C1,1 then

λ(�,α) = −α2 − α(n − 1) sup
∂�

H + o(α) as α → ∞.

In fact, since any annulus A having same measure as a ball B also has a smaller maximal curvature, we have 
λ(A, α) > λ(B, α) as soon as α is large enough. Thereafter, in [13] the authors were interested in minimizing the max-
imal curvature in classes of domains of given volume subject to some kind of additional topological constraints. In view 
of (1), in two-dimension balls achieve the minimal maximal mean curvature whenever we restrict to simply connected sets. 
In dimensions greater than 2, they were able as well to prove that starshapedness is enough to get the same result. Whence 
they left open the following problem.

Question. Let � ∈ R
n be a bounded smooth domain with a connected boundary and let �∗ be a ball with same volume. Do we have 

sup
∂�

H ≥ sup
∂�∗

H?

Corollary 1.2 provides a negative answer.
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