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We consider weak solutions to the stationary Navier–Stokes system with Oseen and 
rotational terms, in an exterior domain. We are interested in the leading term for the 
velocity field and its gradient. Moreover, we deal with the asymptotic behavior at infinity. 
We proved that the velocity may be split, within constants, into the first column of the 
fundamental solution to the Oseen system, plus a remainder term decaying pointwise near 
infinity at a rate which is higher than the decay rate of the Oseen tensor. This result 
improves the theory proposed by M. Kyed [Asymptotic profile of a linearized flow past a 
rotating body, Q. Appl. Math. 71 (2013) 489–500; On the asymptotic structure of a Navier–
Stokes flow past a rotating body, J. Math. Soc. Jpn. 66 (2014) 1–16].
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r é s u m é

Nous considérons des solutions faibles du système de Navier–Stokes stationnaire avec un 
terme d’Oseen et des termes rotationnels dans un domaine extérieur. Notre intérêt se porte 
sur la partie principale d’un développement asymptotique de la vitesse et de son gradient. 
Nous montrons que la vitesse peut être scindée, à des constantes près, en la première 
colonne de la solution fondamentale du système d’Oseen (« tenseur d’Oseen »), plus un reste 
qui décroît ponctuellement dans un voisinage d’infini, à un taux qui est plus élevé que le 
taux de décroissance du tenseur d’Oseen. Ce résultat améliore la théorie présentée par 
M. Kyed [Asymptotic profile of a linearized flow past a rotating body, Q. Appl. Math. 71 
(2013) 489–500 ; On the asymptotic structure of a Navier–Stokes flow past a rotating body, 
J. Math. Soc. Jpn. 66 (2014) 1–16].
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1. Introduction

We shall consider the following problem. Let D ⊂ R
3 be an open bounded set. Suppose this set describes a rigid body 

moving with constant nonzero translational and angular velocity in an incompressible viscous fluid. Then the flow around 
this body with respect to a frame attached to this body is governed by the following set of non-dimensional equations 
(see [7]):

−�u + τ ∂1u + τ (u · ∇)u − (ω × x) · ∇u + ω × u + ∇π = f , div u = 0, (1)

in the exterior domain Dc := R
3\D, supplemented by a decay condition at infinity,

u(x) → 0 for |x| → ∞, (2)

and suitable boundary conditions on ∂D.
In (1) and (2), the functions u : Dc �→ R

3 and π : Dc �→ R are the unknown relative velocity and pressure field of the 
fluid, respectively, whereas the function f : Dc �→ R

3 stands for a prescribed volume force acting on the fluid. The vector 
τ (−1, 0, 0) represents the uniform velocity of the flow at infinity or the velocity of the body, depending on the physical 
situation, and ω := � · (1, 0, 0) corresponds to the constant angular velocity of the body. In particular, the translational 
and angular velocity vectors are parallel. From a physical point of view, this assumption is natural for a steady flow. The 
parameters τ ∈ (0, ∞) and � ∈ R\{0} are dimensionless quantities that can be identified with the Reynolds and Taylor 
numbers, respectively. They will be considered as fixed, like the domain D.

We are interested in “Leray solutions” to (1), (2), that is weak solutions characterized by the conditions u ∈ L6(Dc)3 ∩
W 1,1

loc (Dc)3, ∇u ∈ L2(Dc)9 and π ∈ L2
loc(D

c).
From [8] and [3], it follows that the velocity part u of a Leray solution (u, π) to (1), (2) decays for |x| → ∞ as expressed 

by the estimates

|u(x)| ≤ C
( |x| s(x)

)−1
, |∇u(x)| ≤ C

( |x| s(x)
)−3/2

(3)

for x ∈ R
3 with |x| sufficiently large, where s(x) := 1 + |x| − x1 (x ∈ R

3) and C > 0 a constant independent of x. The factor 
s(x) may be considered as a mathematical manifestation of the wake extending downstream behind a body moving in a 
viscous fluid.

By Kyed [10], it was shown that

u j(x) = γ E j1(x) + R j(x), ∂lu j(x) = γ ∂l E j1(x) + S jl(x) (x ∈ Dc, 1 ≤ j, l ≤ 3), (4)

where E :R3\{0} �→ R
4 ×R

3 denotes a fundamental solution to the Oseen system

−�v + τ ∂1 v + ∇� = f , div v = 0 in R
3. (5)

The definition of the function E is stated in Section 2. As becomes apparent from this definition, the term E j1(x)
may be expressed explicitly in terms of elementary functions. The coefficient γ is also given explicitly, its definition 
involving the Cauchy stress tensor. The remainder terms R and S are characterized by the relations R ∈ Lq(Dc)3 for 
q ∈ (4/3, ∞), S ∈ Lq(Dc)3 for q ∈ (1, ∞). Since it is known from [6, Section VII.3] that E j1|Bc

r /∈ Lq(Bc
r ) for r > 0, 

q ∈ [1, 2], and ∂l E j1|Bc
r /∈ Lq(Bc

r ) for r > 0, q ∈ [1, 4/3], j, l ∈ {1, 2, 3}, the function R decays faster than E j1, and S jl
faster than ∂l E j1, in the sense of Lq-integrability. Thus the equations in (4) may in fact be considered as asymptotic 
expansions of u and ∇u, respectively. The theory in [10] is valid under the assumption that u verifies the boundary condi-
tions

u(x) = e1 + (ω × x) for x ∈ ∂D (6)

and f vanishes. Reference [10] does not deal with the pointwise decay of R and S .
In Theorem 3.1 below, we derive a pointwise decay of u and ∇u, respectively, which is independent of the boundary 

conditions, but compared to [10] and as indicated in (4) our leading term is less explicit than the term γ E j1(x) in (4), and, 
instead of the fundamental solution E j1(x) to the stationary Oseen system, we use the time integral of the fundamental 
solution to the evolutionary Oseen system.

In [5], it was shown that Z j1(x, 0) = E j1(x) for x ∈R
3\{0}, 1 ≤ j ≤ 3, and lim|x|→∞ |∂α

x Z jk(x, 0)| = O
(
(|x| s(x))−3/2−|α|/2

)
for 1 ≤ j ≤ 3, k ∈ {2, 3} [5, Corollary 4.5, Theorem 5.1]. Thus, setting

G j(x) :=
3∑

k=2

βk Z jk(x,0) + F j(x) (x ∈ B S1
c, 1 ≤ j ≤ 3), (7)

we may deduce from (16) that
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