ELSEVIER

Contents lists available at ScienceDirect C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Combinatorics Trimness of closed intervals in Cambrian semilattices ☆

Sveltesse des intervalles bornés d'un demi-treillis cambrien

Henri Mühle

LIAFA, Université Paris Diderot, Case 7014, F-75205 Paris Cedex 13, France

ARTICLE INFO

Article history: Received 26 January 2015 Accepted after revision 1 December 2015 Available online 18 January 2016

Presented by the Editorial Board

Keywords: Cambrian semilattice Tamari lattice Coxeter group Sortable elements Trimness

ABSTRACT

In this article, we give a short algebraic proof that all closed intervals in a γ -Cambrian semilattice C_{γ} are trim for any Coxeter group W and any Coxeter element $\gamma \in W$. This means that if such an interval has length k, then there exists a maximal chain of length k consisting of left-modular elements, and there are precisely k join- and k meet-irreducible elements in this interval. Consequently, every graded interval in C_{γ} is distributive. This problem was open for any Coxeter group that is not a Weyl group.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉSUMÉ

Dans cet article, nous donnons une démonstration courte et algébrique du fait que tous les intervalles bornés d'un demi-treillis γ -cambrien C_{γ} sont sveltes pour tout groupe de Coxeter W et tout élément de Coxeter $\gamma \in W$. Cela signifie que, si un tel intervalle a pour longueur k, il existe une chaîne de longueur k consistant en éléments modulaires à gauche, et il y a exactement k éléments sup-irréductibles et k éléments inf-irréductibles. En conséquence, il s'ensuit que chaque intervalle gradué est distributif. Ce problème était ouvert pour tout groupe de Coxeter qui n'est pas un groupe de Weyl.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The γ -Cambrian semilattice, denoted by C_{γ} and parameterized by a Coxeter group W and a Coxeter element $\gamma \in W$, was introduced by N. Reading and D. Speyer in [16], generalizing N. Reading's construction for finite W [14,15]. This family of semilattices can be seen as a generalization of the famous Tamari lattices to all Coxeter groups, in the sense that the γ -Cambrian semilattice associated with the symmetric group \mathfrak{S}_n and the Coxeter element $\gamma = (1 \ 2 \ \dots n)$ is isomorphic to the Tamari lattice of parameter n. The Tamari lattices play an important role in algebraic and geometric combinatorics, and frequently occur in many seemingly unrelated branches of mathematics [11].

E-mail address: henri.muehle@liafa.univ-paris-diderot.fr.

http://dx.doi.org/10.1016/j.crma.2015.12.004

^{*} This work was funded by the FWF Research Grant No. Z130-N13, and by a Public Grant overseen by the French National Research Agency (ANR) as part of the "Investissements d'Avenir" Program (Reference: ANR-10-LABX-0098).

¹⁶³¹⁻⁰⁷³X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fig. 1. Different generalizations of distributivity.

Previously, many of the properties of the Tamari lattices have been generalized to the γ -Cambrian semilattices, such as EL-shellability and the topology of their order complexes [8,12], congruence-uniformity [13,16,17], or semidistributivity [16]. Another property that the Tamari lattices enjoy is trimness, introduced by H. Thomas [18]. A finite lattice of length k is *trim* if it possesses a left-modular chain of length k, and if it has precisely k join- and k meet-irreducible elements. An interesting observation that goes back to G. Markowsky [10] is the fact that graded trim lattices are distributive. Hence trimness can be seen as a generalization of distributivity to ungraded lattices. It was conjectured in [18] that C_{γ} is trim for any finite Coxeter group W, and any Coxeter element $\gamma \in W$. In the same paper, it was shown that this conjecture is true when W is of type A or B, using the permutation representation of these groups and the definition of C_{γ} as posets on certain pattern-avoiding permutations [18, Theorems 8 and 9]. Subsequently, it was shown in [7, Theorem 4.17] that the said conjecture holds when W is a Weyl group, using the definition of C_{γ} in full generality, namely when W is an arbitrary (perhaps infinite) Coxeter group, and $\gamma \in W$ is any Coxeter element. More precisely, we prove the following theorem.

Theorem 1.1. Every closed interval in a γ -Cambrian semilattice C_{γ} is trim for any Coxeter group W and any Coxeter element $\gamma \in W$. In particular, every graded closed interval in C_{γ} is distributive.

Recall that when W is infinite, C_{γ} is only a semilattice since it does not possess a maximal element. However, any closed interval in C_{γ} is a finite lattice in its own right, and Theorem 1.1 thus implies the local trimmess of C_{γ} .

The proof of Theorem 1.1 uses the definition of C_{γ} in terms of sortable elements, and is thus uniform. One ingredient for proving Theorem 1.1 is the semidistributivity of C_{γ} that was established in [16, Section 8]. Semidistributivity can be seen as another generalization of distributivity to ungraded lattices, but it is different from trimness. Consider for instance the lattice in Fig. 1(a). This is a trim lattice, since it has length 4, it has exactly four join- and meet-irreducible elements, and the highlighted chain consists of left-modular elements. However, it is not semidistributivity. Conversely, Fig. 1(b) shows a semidistributive lattice that is not trim, since it has four join- and four meet-irreducible elements, but length only three.

We recall the necessary background on Coxeter groups in Section 2.1, and recall the definition of the γ -Cambrian semilattices in Section 2.2. We define the non-standard poset-theoretical concepts whenever needed, and refer to [3] for any undefined terminology. In Section 3, we prove Theorem 1.1.

2. Preliminaries

In this section, we give the definitions needed in the remainder of this article. For more information on Coxeter groups, we refer to [1] and [6]. An excellent exposition on γ -Cambrian semilattices is [16]. Throughout the article we use the abbreviation $[n] = \{1, 2, ..., n\}$.

2.1. Coxeter groups

A Coxeter system (W, S) is a pair given by a group W (whose identity is denoted by ε) and a subset $S \subseteq W$ with $S = \{s_1, s_2, \ldots, s_n\}$ such that W admits the presentation

$$W = \langle S \mid (s_i s_j)^{m_{i,j}} = \varepsilon \text{ for } i, j \in [n] \rangle.$$

In this presentation, each $m_{i,j}$ is either a positive integer or the formal symbol ∞ , and these numbers satisfy $m_{i,j} = m_{j,i} \ge 1$ for $i, j \in [n]$, and $m_{i,j} = 1$ if and only if i = j. In particular, $m_{i,j} = \infty$ means that there is no relation between the generators s_i and s_j . The elements s_1, s_2, \ldots, s_n are called the *simple generators* of W and n is called the *rank* of W. Since S generates the group W, every $w \in W$ can be written as a product of those simple generators. This gives rise to the length function

$$\ell_{S}(w) = \min\{k \mid w = s_{i_{1}}s_{i_{2}}\cdots s_{i_{k}}, \text{ where } s_{i_{j}} \in S \text{ for } j \in [k]\}.$$

Now we can define the (right) weak order on W by

Download English Version:

https://daneshyari.com/en/article/10181050

Download Persian Version:

https://daneshyari.com/article/10181050

Daneshyari.com