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Localized potentials in the Dirac equation for the electron dynamics in a zigzag graphene 
ribbon are constructed to support trapped modes while the corresponding eigenvalues are 
embedded into the continuous spectrum.
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r é s u m é

On construit des potentiels localisés pour les équations de Dirac décrivant le comportement 
des électrons dans une bande de graphène en zigzag, pour lesquels des modes piégés 
existent, tels que les valeurs propres correspondantes sont plongées dans le spectre 
continu.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the problem

In the strip � = {(x, y) : x ∈ (0, d), y ∈R} of width d > 0, reduced to 1 by rescaling, we consider the Dirac equation
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in � (1)

perturbed by a compactly supported real-valued, continuous for simplicity, potential P and supplied with the boundary 
conditions:

u(0, y) = 0, v(1, y) = 0 for y ∈R = (−∞,+∞). (2)
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In (1), δ > 0 is a small parameter. This boundary-value problem describes the electron dynamics within one of two valleys 
of the zigzag graphene ribbon �, see [2], while the other valley requires only the complex conjugation of the equations. 
The problem (1), (2) is associated with a self-adjoint operator Aδ in the Lebesgue space L2(�)2 having the domain D(Aδ) =
{w = (u, v) ∈ L2(�)2 : D(∇)w ∈ L2(�)2, (2) is valid}, independent of δ. The spectrum σ(Aδ) is continuous and covers the 
intact real axis R ⊂C. Our goal is to construct specific potentials

P (x, y) := Pτ (x, y) = P0(x, y) + τ1 P1(x, y) + · · · + τ2(2N−1) P2(2N−1)(x, y), τ = (τ1, . . . , τ2(2N−1)) (3)

that provide a non-empty point spectrum of Aδ for a small δ. In other words, we detect eigenvalues of Aδ and the corre-
sponding eigenfunctions w ∈ D(Aδ) to the problem (1), (2) with the exponential decay as y → ±∞.

Since eigenvalues of Aδ are embedded into the continuous spectrum, they possess the natural instability, namely a small 
perturbation of the potential may lead them out of the spectrum and turn into points of complex resonance, cf. [1,7]. This 
means that the appropriate structure (3) of the potential in (1) requires for “fine tuning” the free parameters τ1, . . . , τ2(2N−1) . 
Moreover, the absence of “profitable” symmetries in the Dirac operator does not allow us to employ any conventional trick, 
cf. [4] and [7], which by imposing artificial boundary conditions on the centerlines of the strip � could simplify our task. 
We apply the approach [6], which is based on a criterion [5] for the existence of trapped modes, resorts to the notion [7,8]
of enforced stability of embedded eigenvalues, and constructs an asymptotics of an artificial algebraic object, the augmented 
scattering matrix [5] involved in the criterion. Owing to the symmetry loss, the necessary technicalities become much more 
complicated than in acoustics, water waves, and quantum waveguides. Moreover, the whole boundary-value problem (1), 
(2) cannot be transformed into an elliptic one and arguments sustaining the obtained results diverge from the ones used 
previously in [3,6–8].

2. Incoming and outgoing waves and wave packets

We search for waves, that is bounded solutions of the unperturbed (δ = 0) problem (1), (2), in the form

w(x, y) = e−iλy W (x), W = (U , V ) (4)

with λ ∈R. Assuming ω > 1, we obtain

U (x) = a sin(κx), V (x) = ϕai sin(κ(x − 1)) (5)

where ϕ = sign(sinκ) stands for sign of sinκ , the values κ > 0 and λ are determined through the formulas

K (κ) := κ−2 sin2 κ = ω−2, λ = κ cotκ ⇒ ω = ϕ κ secκ, (λ − 1)∂κ K (κ) ≥ 0 (6)

and, in view of the normalization factor a = ω−1/2|λ − 1|−1/2, the condition ∓∂κ K (κ) > 0 assures that

qR(w, w) :=
1∫

0

(
v(x, R)u(x, R) − u(x, R)v(x, R)

)
dx = ±i. (7)

The Green formula for the Dirac operator shows that the symplectic (sesquilinear and anti-Hermitian) form qR (w, W) is 
independent of R for any wave (4). Furthermore, −iq(w, w) is proportional to the projection on the y-axis of the Poynting 
vector so that, according to the Mandelstam radiation principle, the sign ± in (7) indicates that the wave w(x, y) propagates 
from ∓∞ to ±∞.

Let κn ∈ (πn, πn + π) with n ∈ {1, 2, . . . } be maximum points of the function K , see Fig. 1. Since ∂κ K (κn) = 0, we have 
λn = 1, ωn = |K (κn)|−1/2 and ϕn = (−1)n . At the threshold ω = ωn , in addition to the oscillatory wave w0

n(x, y), see (4)–(6), 
the problem (1), (2) at δ = 0 gains the linear growing wave
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Setting an = ω
1/2
0 and w±(x, y) = w1

n(x, y) ± i w0
n(x, y) yields the relation (7) for these functions, too.

We fix some N ∈ {1, 2, . . . } and put

ωε
N = (ω−1

N + ε)−1 ⇒ ωε
N = ωN(1 − εωN + O (ε2)), (9)

where ε > 0 is small. Let κε−
0 < κε+

1 < κε−
1 < · · · < κε+

N−1 < κε−
N−1 be all positive roots of the equation K (κ) =

(ωε
N )−2, cf. (6) and the dotted line in Fig. 1. The superscript ψ = ± in κεψ

n and the corresponding oscillating waves 
wε−

0 , wε+
1 , wε−

1 , . . . , wε+
N−1, w

ε−
N−1, composing the row wε

† of length 2N − 1, coincide with the sign on the right of (7)

and simultaneously features out that the point (κεψ
n , K (κ

εψ
n )) lays on the descending (ψ = −) or ascending (ψ = +) curve 

of the graph in Fig. 1.
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