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a b s t r a c t 

The feedback circuit approach to nonlinear dynamical systems pioneered by Thomas and coworkers is 

revisited in a thermodynamical perspective. The role of nonequilibrium conditions and of other types of 

constraints such as mass action kinetics or microscopic reversibility around thermodynamic equilibrium 

in the way positive feedback circuits are operating is analyzed. It is shown that the appearance of non- 

trivial steady-state and time-dependent behaviors necessitates that the strengths of the feedback loops 

present exceed some well-defined critical values. Illustrations are provided on prototypical systems giving 

rise to multiple steady states. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Even since the beginnings of his ground-breaking work on 

the Boolean approach to biological regulatory processes ( Thomas, 

1973; 1979 ), René Thomas has been in search of a natural way to 

incorporate time into the logical description. Characteristic of his 

brilliance and creativity, he realized along the way that the tar- 

get should somehow be redefined and indeed turned upside down 

so that, rather than introduce dynamics in a formalism that was 

by essence static, reformulate instead dynamics in terms of ele- 

mentary feedback circuit structures similar to those that he had 

identified and analyzed in his earlier approach. He and his cowork- 

ers ( Kaufman and Thomas, 2003; Thomas, 1991; Thomas and d’Ari, 

1990; Thomas and Kaufman, 2001 ) carried out this reformulation 

systematically, showed how feedback circuits can be related to the 

elements of the Jacobian matrix of a dynamical system and estab- 

lished that the stability properties of a reference state and the on- 

set of non-trivial behaviors depend solely on the circuits present in 

the system among which nuclei, i.e., circuits involving the full set 

of the system’s variables play a prominent role. 

In their quest of the connections between feedback circuits and 

complex dynamical behaviors Thomas and coworkers focused on 
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generic classes of abstract dynamical systems, whatever their ori- 

gin or specific mechanisms might be. On the other hand, natural 

systems obey to strict constraints imposed by physical laws such 

as mass action law in chemical kinetics, microscopic reversibil- 

ity and detailed balance around the state of equilibrium, or pos- 

itivity of state variables such as concentrations. Furthermore it is 

by now established that, in addition to appropriate nonlinearities, 

macroscopic-scale complex dynamical behaviors cannot emerge 

unless the system is driven sufficiently far from the state of ther- 

modynamic equilibrium ( Glansdorff and Prigogine, 1971 ). Our ob- 

jective in this work is to revisit feedback circuits in this perspective 

and to inquire on how nonequilibrium conditions and other types 

of physical constraints may interfere with the way they are oper- 

ating. As a corollary, a number of quantities allowing one to high- 

light these effects will be introduced and evaluated in prototypical 

systems. 

A major result pioneered by Thomas and coworkers has been 

to establish a firm link between positive feedback circuits and the 

occurrence of multiple steady states. We will focus here on posi- 

tive feedbacks generated by chemically reacting systems in which 

all reactive steps are elementary in the sense that (a), they satisfy 

mass action kinetics; and (b), they admit an equilibrium state in 

which microscopic reversibility and detailed balance are secured. 

This latter property entails, in turn, that forward steps coexist with 

their reverses. Positive feedbacks will be associated to autocat- 
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alytic steps and the respective roles of such feedbacks, nonlinear- 

ities and distance from equilibrium will be assessed. We will ad- 

dress steady-state properties in connection with multistability as 

well as time-dependent behavior in connection with the transient 

evolution toward a particular steady state starting from an initial 

condition far away from this state. 

The general formulation is presented in Section 2 . 

Sections 3 and 4 are devoted to detailed studies of positive 

feedback circuits in their simplest forms associated, respectively, 

to second order and to higher order autocatalysis. The main 

conclusions are summarized in Section 5 . 

2. Kinetics and thermodynamics of a positive feedback loop 

In what follows we will be interested in the role of positive 

feedback circuits embedded in a kinetic pathway in which an ini- 

tial substance A is converted into a final product B through a se- 

quence of intermediate steps. Let { x i }, i = 1 , . . . n be the concentra- 

tions of the species involved in the sequence and { w ρ}, ρ = 1 , . . . r

the rates of the individual proceses. Assuming that the system is in 

mechanical equilibrium and maintained spatially uniform and at a 

constant temperature one may write the balance equations linking 

{ x i } to { w ρ} in the form ( De Groot and Mazur, 1962 ) 

dx i 
dt 

= 

r ∑ 

ρ=1 

νiρw ρ

({ x j } ) i, j = 1 , . . . n (1) 

where ν i ρ are the stoichiometric coefficients. 

As stressed in the Introduction, at the fundamental level of de- 

scription all steps in Eq. (1) are reversible and expressible in terms 

of elementary processes according to the law of mass action. Under 

the additional assumption of an ideal solution this entails, in par- 

ticular, that individual rates are products of integer powers of state 

variables. The right hand side of Eq. (1) has thus the structure of a 

polynomial in the x i s. 

The presence of positive feedback circuit in this setting will be 

signaled by the specific structure of some of the functions w ρ , in 

which the presence of a species i or of a sequence i → j → k ��� → i 

thereof enhances the overall rate of its/their own production. We 

will be interested here in the repercussions of such circuits and, 

in particular, in the phenomenon of multistability in its simplest 

manifestation, in which a steady state solution of Eq. (1) prevail- 

ing in some range of values of parameters such as rate constants 

or concentrations of pool chemical species gives rise under certain 

conditions to new branches of steady-state solutions, which merge 

with the reference state at some critical parameter value but re- 

main otherwise distinct. A fundamental point for our purposes is 

that in the vicinity of such bifurcation points of steady-state solu- 

tions the dynamics as described by the full set of Eq. (1) reduces 

to a single equation satisfied by a suitable combination of the ini- 

tial variables, to which we refer as order parameter, and which has 

one of the following three universal forms ( Nicolis, 1995 ) 

dz 
d t 

= ( λ − λc ) z − uz 2 ( transcritical bifurcation ) (2a) 

dz 
d t 

= ( λ − λc ) z − uz 3 ( pitchfork bifurcation ) (2b) 

dz 
d t 

= ( λ − λc ) − uz 2 ( limit point bifurcation ) (2c) 

Here λ is the bifurcation parameter, λc its critical value and u 

an additional parameter determining the direction along which the 

emerging solution branches will be directed. 

Drawing on these results it appears legitimate to assert that the 

essence of multistability and of the role of positive feedbacks can 

be captured by systems involving a single intermediate chemical 

species X beyond the initial and final species A and B and a single 

circuit in the form of a positive feedback loop, provided that the 

kinetics accounts fully for the nonlinearities present in the canon- 

ical forms of Eq. (2a) –(2c) . In this work we focus on two prototyp- 

ical kinetic schemes satisfying these requirements ( Schlögl, 1972 ): 

(i) A second order autocatalytic scheme 

A + X 

k 1 �
k −1 

2 X X 

k 2 �
k −2 

B (3) 

(ii) A higher order autocatalytic scheme 

A + 2 X 

k 1 �
k −1 

3 X X 

k 2 �
k −2 

B (4) 

Here X is the intermediate species of concentration x and k i , 

i = ±1 , ±2 are rate constants. A and B denote the initial and fi- 

nal products whose concentrations a and b are supposed to be 

maintained at constant levels . In a closed system this constitutes 

a satisfactory approximation if A and B are initially much more 

abundant than X , entailing that their relative variations can be ne- 

glected compared to that of X (pool chemical approximation). Al- 

ternatively, in an open system, constancy of a and b appeals to a 

limit where A and B are pumped into the reactor from two exter- 

nal reservoirs at a fast rate, counteracting their consumption by the 

chemical reactions. The autocatalytic steps in (3) and (4) constitute 

the positive feedback loops. If acting alone, they are bound to drive 

the system to thermodynamic equilibrium in which x eq = k 1 a/k −1 

would be the unique steady state available and the positive feed- 

backs would eventually become ineffective. The presence of a sec- 

ond step allows for maintaining the system out of equilibrium as 

long as the overall forward reaction rate remains different from the 

backward one, 

k 1 k 2 a 

k −1 k −2 b 
� = 1 (5) 

The questions we will address are, how under such nonequilib- 

rium conditions the feedback loops are activated to produce com- 

plex behavior, including multistability; and how can one quantify 

the response of the system and in particular its sensitivity to the 

constraints present. If on the contrary the equality sign prevails in 

Eq. (5) , each of the individual steps in schemes (3) and (4) will 

settle to equilibrium (detailed balance property), with 

x eq = 

k 1 a 

k −1 

= 

k −2 b 

k 2 
(6) 

and, eventually, the feedback loops will be ineffective. 

In addition to steady states, be they equilibrium or nonequilib- 

rium like, transient behavior is also of great importance. For the 

class of one-variable systems considered here the rate equation to 

which Eq. (1) are reduced and which accounts for both steady- 

state and time-dependent properties can be written as 

dx 

dt 
= w 1 ( a, x ) − w −1 ( x ) − w 2 ( x ) + w −2 ( b ) (7a) 

with 

w 1 = k 1 ax n , w −1 = k −1 x 
n +1 , w 2 = k 2 x, w −2 = k −2 b (7b) 

and n = 1 or 2 for schemes (3) and (4) , respectively. 

A first signature of time-dependent behavior concerns stability. 

Let x be a reference (typically time-independent) state. The condi- 

tion under which this state will remain robust against small per- 

turbations is that the derivative of the right hand side of (7) eval- 

uated at x be negative, 

d 

dx 

[ 
w 1 

(
a, x 

)
− w −1 ( x ) − w 2 ( x ) 

] 
x 

< 0 (8) 
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