ARTICLE IN PRESS

Marine Environmental Research xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Marine Environmental Research

journal homepage: www.elsevier.com/locate/marenvrev

Transcriptomic, lipid, and histological profiles suggest changes in health in fish from a pesticide hot spot

Sharon E. Hook^{a,*}, Julie Mondon^b, Andrew T. Revill^c, Paul A. Greenfield^d, Rachael A. Smith^e, Ryan D.R. Turner^e, Patricia A. Corbett^b, Michael St J. Warne^{f,e,g,h}

^a CSIRO Oceans and Atmosphere, Lucas Heights, New South Wales, Australia

^b Deakin University, Warrnambool, Victoria, Australia

^c CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

^e Queensland Department of Science and Environment, Brisbane, Queensland 4001, Australia

^f Centre for Agroecology, Water and Resilience, Coventry University, United Kingdom

⁸ Australian Rivers Institute, Griffith University, Queensland 4111, Australia

^h Queensland Alliance of Environmental Health Sciences, University of Queensland, Queensland, 4108, Australia

ARTICLE INFO

Keywords: Atrazine Diuron Imidacloprid RNA Seq Asian sea bass (barramundi) Agricultural pollution Lipids

ABSTRACT

Barramundi (*Lates calcarifer*) were collected at the beginning (1st sampling) and end (2nd sampling) of the wet season from Sandy Creek, an agriculturally impacted catchment in the Mackay Whitsundays region of the Great Barrier Reef catchment area, and from Repulse Creek, located approximately 100 km north in Conway National Park, to assess the impacts of pesticide exposure. Gill and liver histology, lipid class composition in muscle, and the hepatic transcriptome were examined. The first sample of Repulse Creek fish showed little tissue damage and low transcript levels of xenobiotic metabolism enzymes. Sandy Creek fish showed altered transcriptomic patterns, including those that regulate lipid metabolism, xenobiotic metabolism, and immune response; gross histological alterations including lipidosis; and differences in some lipid classes. The second sampling of Repulse Creek fish showed similar alterations in hepatic transcriptome and tissue structure as fish from Sandy Creek. These changes may indicate a decrease in health of pesticide exposed fish.

1. Introduction

Pesticides

Poor water quality from agricultural runoff is a concern for the Great Barrier Reef and the adjacent catchment area in northern and central Queensland, Australia (Brodie et al., 2012; Kroon et al., 2012; Smith et al., 2012). Elevated levels of sediment, nutrient, and pesticides are transported from agricultural land to freshwater and estuarine ecosystems, and subsequently discharged to the Great Barrier Reef (GBR) lagoon (Devlin and Schaffelke, 2009; Kroon et al., 2012; Smith et al., 2012). The presence of these agricultural contaminants in the GBR has been linked to loss of coral cover and species from this iconic ecosystem (e.g. Brodie and Pearson, 2016). Notably, catchments within the Mackay Whitsunday region have been recognised as ecosystems with a high risk from pesticides (Brodie et al., 2013a; b), with elevated levels of photosystem II inhibiting herbicides, such as atrazine, diuron and hexazinone, as well as the neonicotinoid imidacloprid (e.g., Garzon-Garcia et al., 2015; Wallace et al., 2016). In particular, Sandy Creek in the Plane basin, has recorded some of the highest pesticide

concentrations of any monitored catchment that discharge to the GBR (Smith et al., 2012, 2015; Brodie et al., 2013a; b; Garzon-Garcia et al., 2015; Wallace et al., 2016).

The economic and ecological importance of the GBR to Queensland and Australia, as well as the threats of climate change to reef ecosystems, has driven most research on the GBR to focus on the marine ecosystems of the GBR (Schaffelke et al., 2012; Brodie and Pearson, 2016). Far less emphasis has been directed towards evaluating the impacts from poor water quality on ecosystem health within catchments that discharge to the GBR (Kroon et al., 2015). Concerningly, pesticide concentrations, and therefore risk, are higher in freshwater and estuarine ecosystems as these ecosystems are closer to the pesticide source (Devlin et al., 2015; Waterhouse et al., 2017). Much of the contemporary research concerning pesticide risks in the region has focussed on impacts to photosynthetic species, such as algae and seagrass (e.g., Magnusson et al., 2010; Magnusson et al., 2012; Flores et al., 2013) due to the proliferation of photosystem II (PSII) inhibiting herbicides in aquatic ecosystems (Lewis et al., 2009). However, there are

* Corresponding author.;

E-mail address: Sharon.Hook@csiro.au (S.E. Hook).

https://doi.org/10.1016/j.marenvres.2018.06.020

^d CSIRO Oceans and Atmosphere, North Ryde, New South Wales, Australia

Received 19 April 2018; Received in revised form 14 June 2018; Accepted 28 June 2018 0141-1136/@ 2018 Published by Elsevier Ltd.

ARTICLE IN PRESS

S.E. Hook et al.

Abbrowintions

Marine Environmental Research xxx (xxxx) xxx-xxx

Abbreviations	
BHMT	Retaine-homocysteine S-methyltransferase 1
CYP	Cytochrome p450
Cen85	Centrosomal protein of 85 kDa
UDPGT	Uridine diphosphate glucuronosyltransferase
GCS	Glutamate-cysteine ligase catalytic subunit
PAPSS 2	Functional 3'-phosphoadenosine 5'-phosphosulfate syn-
	thase 2
LDM	Lanosterol 14-alpha demethylase
RARRE	Retinoic acid receptor responder protein
MAT 2	Methionine adenosyltransferase 2
TAT	Tyrosine aminotransferase
CAT	Catalase
GST	Glutathione S Transferase
m GST	microsomal Glutathione S Transferase
zDJ-1	Protein deglycase DJ-1zDJ-1
GPx-1	Glutathione peroxidase 1
PHGPx	Phospholipid hydroperoxide glutathione peroxidase, mi-
	tochondrial
C1-B17.2	NADH-ubiquinone oxidoreductase subunit B17.2
FGH	Formylglutathione hydrolase
FALDH	Glutathione-dependent formaldehyde dehydrogenase
GCS	Glutamate-cysteine ligase catalytic subunit
DHCR24	Delta(24)-sterol reductase
Glx II	Glyoxalase II
ndufa6	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 6
GRB2	Growth factor receptor-bound protein 2
park2	E3 ubiquitin-protein ligase
tmem161	a Transmembrane protein 161A
ZnF	Zinc finger like protein
FASN	Fatty acid synthase
CF	Complement factor
MyD88	Myeloid differentiation primary response protein
CCL	CC- chemokine
NF-κ	Nuclear factor NF-kappa
IgE Fc ry	High affinity immunoglobulin epsilon receptor subunit gamma
RP	RNA polymerase
pS100B	S100 calcium-binding protein B
RSAD	Radical S-adenosyl methionine domain-containing protein
p53Lyn	Tyrosine-protein kinase Lyn
SPRK1	Serine/arginine-rich protein-specific kinase 1
THBS-1	Thrombospondin-1
Аро	Apoptosis-inducing ligand
GPBP	Goodpasture antigen-binding protein
CAR	Coxsackievirus and adenovirus receptor homolog

also concerns relating to the impact of poor water quality on the health of local fish populations (e.g. Kroon et al., 2015; Hook et al., 2017a; b). The herbicides measured at elevated concentrations in GBR catchments have been shown to cause changes in fish health in laboratory studies. For example, exposure to atrazine caused decreased fecundity in fish continuously exposed to environmentally realistic ($0.5 \mu g/L$) concentrations of atrazine in laboratory studies (Rohr and McCoy, 2010; Tillitt et al., 2010), although the mechanism by which this occurs has not been established. However, the sublethal impacts on fish from exposure to many of the compounds present in the GBR catchments have not been determined (Kroon et al., 2015). Moreover, impacts on fish health from exposures to complex mixtures of herbicides, their break down products, and the adjuvants present in commercial pesticide products, that exist in the GBR catchments, also have not been elucidated.

Global gene expression is increasingly analysed via RNA-Seq

endoU	Poly(U)-specific endoribonuclease
C1 Inh	Plasma protease C1 inhibitor
CEPS	Ubiquitin-60S ribosomal protein L40
SPT	Serine-pyruvate aminotransferase
CRBP-II	Cellular retinol-binding protein II
DECR1	2,4-dienoyl-CoA reductase
FABP	Fatty Acid Binding Protein
EL	Endothelial lipase
PAF-AH	Platelet-activating factor acetylhydrolase
GT	Gastrotropin
LBP	Lipopolysaccharide-binding protein
AOX	Peroxisomal acyl-coenzyme A oxidase
LPIN1	Lipin-1
ACSBG2	Long-chain-fatty-acid–CoA ligase
FERMT2	Fermitin family homolog 2
PLC	Phospholipase C
gdpd 2	Glycerophosphodiester phosphodiesterase 2
LK4	Lipid kinase 4
StARD11	StAR-related lipid transfer protein 11
INP54	Phosphatidylinositol 4,5-bisphosphate 5-phosphatase
VLACS	Very long-chain acyl-CoA synthetase
SCD	Acyl-CoA desaturase
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
PP1	Protein phosphatase 1
PGM 1	Phosphoglucomutase-1
PGK1	Phosphoglycerate kinase 1
TIM-B	Triosephosphate isomerase B
PGAM1	Phosphoglycerate mutase 1
ATF	cAMP-dependent transcription factor
G6PD	Glucose-6-phosphate 1-dehydrogenase
GYS	Glycogen synthase
MDH	Malate dehydrogenase
EMAP-2	Endothelial monocyte-activating polypeptide 2
MAX	Myc-associated factor X
EGR-1	Early growth response protein 1
PKM	Pyruvate kinase
AKRIAI	Aldo-keto reductase
GTase	Glucanotransferase
НРХ	Hemopexin
CaM	
PI3K	Phosphatidylinositol 3-kinase
PKB	Protein kinase B Deta
p53Lyn	lyrosine-protein kinase Lyn
GSK	Glycogen synthase kinase
PCB	Pyruvic carboxylase
GNMT	Giycine N-metnyitransierase

(Mehinto et al., 2012). Analysing global gene expression has the benefit of being able to identify changes in transcript levels, which suggest changes at the physiological level, without an a priori hypothesis as to which pathways are altered by changes in water quality (e.g., Hook et al., 2017a; b). The ability to measure physiological changes without a pre-identified mode of toxic action is an advantage when working with pesticides, many of which have not been studied at the molecular level in fish, and in field studies, where contaminants exist in complex mixtures and may interact (e.g., Gustavsson et al., 2017; Scott et al., 2018). In theory, changes in transcript abundance can also be used as evidence of altered signalling, a cellular response in adverse outcome pathways (e.g. Ankley et al., 2010), and be used to predict potential higher organism responses (Villeneuve et al., 2014). However, to be ecologically relevant, changes in the transcriptome need to be linked to a "higher level" change, such as increased incidence of disease. Changes in transcript abundance do not necessarily reflect changes in gene Download English Version:

https://daneshyari.com/en/article/10223919

Download Persian Version:

https://daneshyari.com/article/10223919

Daneshyari.com