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A B S T R A C T

The amount of data in soil science increased at exponential rates over the last decades, promoted by rapid
technological innovation. This development led to a better understanding of processes but also required the
introduction of data mining into soil science. With diffuse reflectance Fourier transform (DRIFT) spectroscopy,
one of those new methods, soil scientist could build up large spectral libraries. These libraries can expand over
large, heterogeneous areas requiring classification algorithms to find subsets or patterns in the data prior to
further analysis. The k-means algorithm has become one of the most frequently used algorithms for this task.
However, fuzzy k-means (FKM) clustering, a fuzzy variation of k-means, is potentially better suited for spectral
data. Fuzzy logic allows for class overlaps and is supposed to reflect the complex nature of soil spectra and
continuous environmental variables. In this study, we collected over 1000 mid-infrared DRIFT spectra of agri-
cultural soils from the West African savannah zone and clustered the data using k-means and FKM. Our aim was
to explore the feasibility of centroid-based cluster algorithms in finding substructures in spectral data and to
discuss the benefits of fuzzy clustering. We found a two-group pattern separating the data set in a northern and
southern part. The clustering could primarily be explained by geology and climatic gradients. While both al-
gorithms performed similarly well in picking up the structure, FKM could reveal a transition zone between the
two clusters that was not detectable with k-means. This transition zone was explained by a gradual change in
aeolian dust deposition, topography, and a change in geology. With this study, we showed the benefits of fuzzy
clustering over traditional hard clustering for finding substructure in unexplored spectral data. We recommend
the use of continuous classes, as they incorporate more information that could potentially improve subsequent
analysis.

1. Introduction

In recent years, the sheer amount of soil, agricultural, and en-
vironmental data has increased at exponential rates through the in-
troduction of new measurement equipment for proximal and remote
sensing, and the prevalent use of automated data collection systems
(Cebeci and Yildiz, 2015; Raj et al., 2018). These new techniques pro-
vide data for a better understanding of environmental processes by
allowing on the one hand a high temporal resolution and/or a long term
monitoring and on the other hand a high spatial resolution over large
areas. These progresses in soil science over the last 20–30 years have
jointly evolved into a new discipline labelled digital soil mapping
(DSM) (McBratney et al., 2003).

One of these new methods facilitating DSM efforts is diffuse re-
flectance Fourier transform (DRIFT) spectroscopy both in the visible-

near infrared (vis-NIR) and the mid-infrared (MIR) range (McDowell
et al., 2012). DRIFT spectroscopy shows a high potential for identifying
differences and changes in soil properties over time and space, as these
methods are more rapid, cost-effective, and require minimal sample
preparation compared to traditional laboratory methods (e.g., Bellon-
Maurel and McBratney, 2011; McCarty et al., 2002; Reeves, 2010;
Soriano-Disla et al., 2014). Spectroscopy allows for a high sample
throughput and thus a high spatial resolution of samples as used in DSM
(Viscarra Rossel et al., 2009). Soil spectra contain principally qualita-
tive information about soil properties and mineralogy but have also
been used to estimate soil properties quantitatively, as reviewed by
Soriano-Disla et al. (2014). The complex nature of spectra with over-
lapping absorption bands between spectral signatures of different soils
require for multivariate statistical and chemometric methods in order to
interpret the spectra (Viscarra Rossel and Behrens, 2010).
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Due to its ability to obtain large numbers of samples at low cost,
spectral libraries can expand over large areas incorporating soils with
highly varying characteristics making an evaluation even more diffi-
cult. In these cases, classification algorithms are useful to find subsets or
patterns of similar samples based on their spectral information prior to
the main analysis, e.g., to improve the predictions of soil parameters on
subset models (Araújo et al., 2014; McDowell et al., 2012). These dif-
ferent largely unsupervised classification techniques are commonly
combined under the umbrella term cluster analysis (Cebeci and Yildiz,
2015). The main concept behind all cluster algorithms is to assign si-
milar objects into a cluster based on given features that are more similar
to each other than to objects in different clusters (Bezdek et al., 1984).
While hundreds of algorithms based on different concepts exist and the
choice of an appropriate algorithm depends on criteria such as data
size, structure, and aim of the study, many studies report a good overall
performance for partitioning algorithms belonging to the k-means fa-
mily (Bora and Gupta, 2014; Cebeci and Yildiz, 2015; Steffens et al.,
2014). Since its introduction by MacQueen (1967), k-means has be-
come one of the most popular algorithms in exploratory data analysis.
However, as a hard clustering algorithm, k-means is not suited to find
overlapping classes. To take continuous data and gradual boundaries in
the environment into account, fuzzy logic had been introduced into
DSM in the 1990s (Burrough et al., 1997; De Gruijter and McBratney,
1988; McBratney and Odeh, 1997; Odeh et al., 1990, 1992). In clus-
tering, this problem was handled by the introduction of fuzzy k-means
(FKM, also known as fuzzy c-means) clustering by Bezdek (1981). FKM
is a direct generalization of k-means hard clustering (McBratney and de
Gruijter, 1992). In fuzzy, soft clustering, every object belongs to every
cluster to a certain degree of membership. This makes FKM potentially
interesting for the clustering of spectral data, due to the continuous and
complex nature of the spectra (Viscarra Rossel et al., 2016).

While cluster algorithms are widely applied to spectral data in soil
studies, whether to improve prediction models (e.g., Araújo et al.,
2014) or to determine soil classes for DSM (e.g., Žížala et al., 2017), we
do not know of any study that compares hard and fuzzy clustering
approaches in a case study. Therefore, we attempted to find sub-
structures in a large data set of West African agricultural soils based on
over 1000 collected MIR spectra. For classification, we used two dif-
ferent centroid-based cluster algorithms out of the broad spectrum of
methods: the very common and more conventional hard clustering al-
gorithm k-means and FKM as a clustering approach based on fuzzy
logic. As this is an exploratory data analysis, we tried to find sub-
structure in the data first and afterwards tried to explain underlying
structures based on local climate, geography, and available soil data.
We compared the results of both algorithms and discussed the ad-
vantages of fuzzy classification compared to conventional hard classes.
The aims of this study were: (i) to explore the feasibility of centroid-
based cluster algorithms in finding substructures in an unexplored
spectral data set, (ii) to explain the clustering internally by spectral
interpretations and with external data using environmental and soil
variables, and (iii) to discuss the benefit of fuzzy compared to hard
classes.

2. Material and methods

2.1. Soil sampling and analysis

The study area expands over the savannah zone of western Africa
incorporating parts of northern Ghana and Burkina Faso. Soil samples
were taken during four different sampling campaigns between 2013
and 2015. The sampling sites encompass urban agricultural sites in the
cities of Tamale, Ghana and Ouagadougou, Burkina Faso and the sur-
rounding peri-urban and rural areas, as well as covering wide parts of
rural areas in the Northern, Upper West, and Upper East Regions of
Ghana (Fig. 1). Altogether, there were 1084 soil samples summarizing
the four sampling campaigns. Further details about the different

campaigns can be found in Table 1.
Soil samples were taken at 0–20 cm depth in three replicates per

plot. All replicates were air-dried after sampling, pooled, gently dis-
aggregated, and sieved to<2mm for further analysis (Bellwood-
Howard et al., 2015). Afterwards, samples were finely ground
(< 200 μm) for 2min in an agate mill (Fritsch GmbH, Idar-Oberstein,
Germany) for spectral measurements.

For selected reference samples, soil properties were determined in
the laboratory. A total of 163 samples (40 from Burkina Faso and 123
from Ghana) were analysed by wet chemistry according to methods
described in Häring et al. (2017) and Bellwood-Howard et al. (2015).
Soil properties determined were soil texture, soil pH, soil organic
carbon, Fe oxides, and cation exchange capacity (CEC).

All sample sites were georeferenced and loaded into a geographic
information system (GIS) for spatial analysis of the obtained data. For
further interpretation, additional geographic and geologic information
was loaded into the GIS. We obtained climatic information for the study

Fig. 1. Overview over the study area in Burkina Faso and Ghana with the lo-
cation of the sampling locations.

Table 1
Overview over the different sampling campaigns.

Study Year Location n Characteristic

A 2013 Tamale and
Ouagadougou

419 Urban, peri-urban, and rural
sites

B 2014 Tamale and
Ouagadougou

294 Peri-urban sites only

C 2014 Northern Ghana 294 Rural maize fields only
D 2015 Northern Ghana 77 Rural maize fields only
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