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ARTICLE INFO ABSTRACT

In order to obtain an improved soil moisture (SM) dataset at large scale, an advanced SM merging methodology
based on error correction methods was constructed to merge the model-based and in-situ observed SM data. The
SM datasets in a 0-40 cm soil layer were derived from 10 km x 10 km Variable Infiltration Capacity (VIC) model
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Keywords: and 797 in-situ stations, respectively. The merging methodology was conducted grid by grid, and mainly in-
VIC model cluded two parts: bias correction and random error correction. Firstly, the bias correction was performed for the
SM merging VIC simulations by applying the Cumulative Distribution Function (CDF) matching approach combined with the

Error correction
CDF matching
Kriging technique
OI technique

kriging technique. Secondly, the random error of the VIC simulations was corrected using an Optimal
Interpolation (OI) technique based on a spatio-temporal correlation function which was proposed and con-
structed in this study. Through validations against in-situ observations, the merged SM was evaluated, and the
merging errors in each step were analyzed and discussed. The results showed that the merged SM product was
improved compared to the original SM data, both temporally and spatially. The SM merging methodology is
effective and reliable in combining the accurate but sparse in-situ observations and the continuous VIC simu-
lations. In addition, the spatial mismatch impact on the representativeness of in-situ stations was limited, and the
merging errors were mainly produced in the CDF estimation process. The random error information in the spatial
dimension exhibited a bigger impact on the random error correction comparing to that in the temporal di-
mension. This study provided strong encouragement for the efficient use of in-situ SM observations and provided
valuable methods for combining multi-sources SM datasets.

1. Introduction Radiometer-Earth observing system (AMSR-E) (McCabe et al., 2005),
the Soil Moisture and Ocean Salinity (SMOS) (Kerr, 2007), and the Soil
Moisture Active Passive (SMAP) (Cai et al., 2017) product. Un-

fortunately, the satellite sensors can only provide SM data for the sur-

Soil moisture (SM) is recognized as a key variable in hydro-me-
teorological applications, since it controls the hydrological cycle and

land-atmosphere interactions such as evapotranspiration, infiltration,
and runoff (Koster et al., 2004; Seneviratne et al., 2010). SM can be
measured accurately through in-situ stations, however, the measured
data is inadequate in both spatial coverage and temporal frequency.
Compared with the in-situ observations, the continuous SM data
sources over large areas provided by satellite remote sensing are widely
used in related researches (e.g., Lievens et al., 2015; Dorigo et al., 2015;
Colliander et al., 2017). In particular, the microwave remote sensing
SM products have great potential in SM monitoring compared to the
optical remote sensing SM product which is significantly affected by
weather and vegetation cover (Parrens et al., 2012). Examples of re-
levant microwave-based SM products are the Advanced SCATterometer
(ASCAT) (Wagner et al., 2007), the Advanced Microwave Scanning

face soil layer (0.2-5 cm) (Escorihuela et al., 2010), while the SM values
of deeper soil layers are considered to exert influence in hydro-me-
teorological applications (such as rainfall-runoff prediction, drought
monitoring, and water resource management) (Seneviratne et al., 2010;
Choi et al., 2013). Moreover, the accuracy of satellite-based SM product
is closely related to surface roughness, soil type, and vegetation cov-
erage which may increase the observational uncertainties (Gruhier
et al., 2010).

Another different strategy to obtain the SM data is by the applica-
tion of hydrological models, based on an understanding of physical
processes, and long-term meteorological observations. The SM simula-
tions can efficiently reflect the spatio-temporal variations of SM which
are observed by the in-situ stations and satellites (Du et al., 2016).
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However, the SM simulations suffer from significant errors that are
greatly influenced by the particular model structure, uncertainties of
model parameters, and the meteorological forcings (Dumedah and
Coulibaly, 2013; Massari et al., 2015). In general, SM data derived from
above methods are not perfect and each method possesses characteristic
uncertainties.

One common solution to obtain an improved SM dataset is to as-
similate observations into hydrological models. Over the last couple of
decades, data assimilation methods such as extended or ensemble
Kalman filters (Draper et al., 2012; de Rosnay et al., 2013) were widely
used for SM data assimilation (Liu et al., 2012b; Lahoz and De Lannoy,
2014). Many of these applications assimilate in-situ observed (e.g., Han
et al., 2012; Gruber et al., 2018) or satellite-based (e.g., Sahoo et al.,
2013; Lievens et al., 2015) SM data into hydrological models to obtain a
continuous and more accurate SM dataset. Nevertheless, prior knowl-
edge of modeling and observational uncertainties are required in data
assimilation (Yilmaz et al., 2012; Yang et al., 2016), and ad-hoc error
statistics are frequently used for describing the errors in assimilated
observations, model parameters, model structure, and model forcings.
As a result, the relative weights between the model and the observa-
tions are theoretically subjective, which may compromise the re-
presentativeness of each data source, and even further reduce the si-
mulation accuracy (Crow and Van Loon, 2006; Maggioni et al., 2013).
In addition, the assimilated SM data is still a modeled product, and it is
unclear whether the assimilations retain the spatio-temporal char-
acteristics detected by the observations (Liu et al., 2011).

An improved SM product can be also expected if different SM data
sources are merged. For example, Liu et al. (2011, 2012c) firstly in-
tegrated passive (AMSR-E) and active (ASCAT) microwave satellite SM
estimates for a combined SM product based on a modeled SM product.
After that, the SM product was extended and improved within the
Climate Change Initiative (CCI) program of European Space Agency
(ESA) by combining more satellite-based SM products (Dorigo et al.,
2015; Enenkel et al., 2016). The latest CCI product (ESA CCI SM v04.2,
http://www.esa-soilmoisture-cci.org/dataregistration) covers a period
from January 1978 to December 2016, which has a great potential for
climate trend assessments. However, the CCI product is still subject to
the observational depth and surface conditions, and discontinuities
existed in its time series owing to the different observation systems. A
more objective merging method was constructed by Yilmaz et al.
(2012), who merged the model-, remote sensing-based SM products
using a Triple Collocation (TC) method in a least squares framework.
Nevertheless, the uncertainties estimated from the TC method for each
data source are constant in time and the corrective information is not
temporally propagated forward (Crow and Berg, 2010; Dorigo et al.,
2010). Moreover, the merged or assimilated SM data obtained through
the methods above are still biased, owing to the fact that the basic
dataset such as model- or satellite-based SM are systematically different
from the actual SM observations.

Generally, the errors of SM data can be divided into bias and
random errors (Lahoz and De Lannoy, 2014). While biased SM data may
not be a significant issue for some applications, such as some drought
monitoring (e.g. Wu et al., 2011; Choi et al., 2013) and the climate
change research (e.g. Dorigo and de Jeu, 2016), an accurate doc-
umentation of absolute magnitudes is critical for most applications,
especially in agricultural production estimation and SM-based model
calibration (Lahoz and De Lannoy, 2014). In order to obtain an im-
proved SM product both in absolute magnitude and dynamic change, in
this study, the relatively accurate but sparse in-situ SM data is selected
as the observational source instead of biased satellite-based SM data,
and the model-based SM data over a large area is selected as the con-
tinuous SM data source. We focused on developing an error correction
method for merging in-situ observed and model-based SM data. Similar
methods were typically used in the merging of meteorological vari-
ables, in which the Optimal Interpolation (OI) technique (Derber and
Rosati, 1989) is supposed to be the most popular and effective method
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(Wang and Xie, 2007; Xie and Xiong, 2011; Pan et al., 2012). The OI
technique is well-established in meteorological data assimilation to
work out the optimal values only within a certain range, which is
theoretically suitable for the SM merging. However, comparatively
little investigation has been done on SM merging based on the OI
technique, since the error characteristics of SM are quite different from
that of meteorological data. Even for the OI-based SM analysis system
of European Center for Medium-range Weather Forecasts (ECMWF),
which is based on the assimilation of temperature and relative humidity
instead of SM observations (Scipal et al., 2008).

The application of SM merging via the OI technique mainly faces
two difficulties: the bias correction and the random error statistics (Xie
and Xiong, 2011). Bias correction is a significant pre-requisite for the OI
technique which requires the presence of unbiased data sources. In
meteorological applications (e.g. Xie and Xiong, 2011; Pan et al., 2012),
the bias of satellite-based or other data sources were often corrected by
matching their Probability Density Function (PDF) with that of the
observations using the PDF matching approach (Xie and Xiong, 2011).
However, the PDF of meteorological observations are collected from
surrounding stations within a large range, which is unsuitable for SM
observations, since their in-situ station coverage is limited and SM va-
lues are highly variable. Moreover, SM bias correction over large scale
in previous studies (e.g. Schneider et al., 2014; Kolassa et al., 2017)
based on spatially continuous products such as model- and satellite-
based products. It is difficult to correct the bias of simulations using the
in-situ observations derived from limited amount of stations with lim-
ited observational times. For the random error statistics, SM is not only
spatially correlated with meteorological variables, soil properties, and
vegetation, but also temporally affected by the antecedent SM in-
formation (Maggioni et al., 2013; Penna et al., 2013). This is quite
different from the meteorological variables. It is a challenge for con-
sidering the two dimensional SM errors in the OI technique.

The observational SM time series is almost normally distributed and
can be parameterized using two moments: the mean value and the
standard deviation (Brocca et al., 2010a). The two moments are quite
stable over a large scale, and can be estimated over space using the
kriging technique (Webster and Oliver, 2001). On this basis, the model-
based SM data can be corrected in each grid using the Cumulative
Distribution Function (CDF) matching approach (Reichle and Koster,
2004; Schneider et al., 2014), which is similar to the PDF matching but
more commonly used in land surface applications. Moreover, the
random error of model-based SM values are auto-correlated, both
spatially and temporally, thus, a spatio-temporal correlation function
was proposed for the OI technique.

Accordingly, in this study we adapted to these challenges by con-
structing a two-step SM merging methodology based on the CDF
matching approach and the OI technique. The two SM merging sources
were derived from 797 in-situ stations, and a daily Variable Infiltration
Capacity (VIC) model with a resolution of 10 km X 10 km, respectively,
during the study period from January 2008 to December 2016. Finally,
an accurate SM product over a large scale was produced, and evaluated
through various validation experiments. We have mainly achieved two
innovations in the SM merging methodology: (1) The VIC simulations
are corrected over large scale using the in-situ observations derived
from a limited amount of stations with limited observational times; (2)
Both the spatial and the temporal error characteristics are quantified in
the OI technique.

2. Data and methodology

A two-step SM merging methodology was constructed in this study.
To conduct the merging methodology, the Huang-Huai-Hai River Basin
(3HRB) (Fig. 1) was selected as the study area, since it is a key area of
agricultural production with the densest population in China (Lu et al.,
2012).
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