

Classification of plethories in characteristic zero

ARTICLE INFO

Article history: Received 5 January 2017 Available online xxxx Communicated by Bernd Ulrich

Keywords: Plethories Ring schemes Commutative ring Biring Tall–Wraith monad

ABSTRACT

We classify plethories over fields of characteristic zero, thus answering a question of Borger–Wieland and Bergman. All plethories over characteristic zero fields are linear, in the sense that they are free plethories on a bialgebra. For the proof we need some facts from the theory of ring schemes where we extend previously known results. We also classify plethories with trivial Verschiebung over a perfect field of non-zero characteristic and indicate future work.

© 2018 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	75
2.	Ring schemes	78
3.	Plethories and $k - k$ -birings	83
4.	Classification of plethories over a field of characteristic zero	87
5.	Some classification results in characteristic $p > 0$	90
Refer	ences	94

1. Introduction

Plethories, first introduced by Tall–Wraith [13], and then studied by Borger–Wieland [3], are precisely the objects which act on k-algebras, for k a commutative ring. There are

E-mail address: macarlso@math.kth.se.

 $[\]label{eq:https://doi.org/10.1016/j.jalgebra.2018.08.025} 0021-8693 @ 2018 Elsevier Inc. All rights reserved.$

many fundamental questions regarding plethories which remain unanswered. One such question is, given a ring k, whether one can classify plethories over k, in this paper we will take a first step towards a classification.

For some motivation, let us start by looking at the category of modules Mod_k over a commutative ring k. If we consider the category of representable functors $Mod_k \rightarrow Mod_k$, there is a monoidal structure given by composition of functors. Then one defines a k-algebra R as a k-module R together with a comonad structure on the representable endofunctor $Mod_k(R, -)$: $Mod_k \rightarrow Mod_k$ with respect to composition of functors. Heuristically, this says that a k-algebra is precisely the kind of object which knows how to act on k-modules. This can be extended to a non-linear setting, so that instead of looking at k-modules we look at k-algebras Alg_k and consider representable endofunctors $Alg_k \rightarrow Alg_k$. A comonoid with respect to composition of functors is then called a plethory and analogously, a plethory is what knows how to act on k-algebras. One particular important example of a plethory is the \mathbb{Z} -algebra Λ which consists of the ring of symmetric functions in infinitely many variables with a certain biring structure. The functor $\operatorname{Alg}_k(\Lambda, -)$: $\operatorname{Alg}_k \to \operatorname{Alg}_k$ represents the functor taking a ring R to its ring of Witt vectors. Using plethories one gets a very conceptual view of Witt vectors and in [2] James Borger develops the geometry of Witt vectors using the plethystic perspective.

Let now k be a field. If we let \mathcal{P}_k denote the category of plethories over k, there is a functor

$$P: \mathcal{P}_k \to \operatorname{Bialg}_k,$$

into the category of cocommutative counital bialgebras over k, which takes a plethory Q to its primitive elements P(Q). This functor has a left adjoint S(-): Bialg_k $\rightarrow \mathcal{P}$ and we say that a plethory Q is linear if $Q \cong S(A)$ for some cocommutative, counital bialgebra A. Heuristically, a plethory Q is linear if every action of Q on an algebra B comes from an action of a bialgebra on B. The main theorem of this paper is:

Theorem 1.1. Let k be a field of characteristic zero. Then any k-plethory is linear.

This answers a question of Bergman–Hausknecht [1, p. 336] and Borger–Wieland [3] in the positive. The theorem is proved by studying the category of affine ring schemes. We have the following results, extending those of Greenberg [8] to arbitrary fields and not necessarily reduced schemes:

Theorem 1.2. Let k be a field. Then any connected ring scheme of finite type is unipotent.

Theorem 1.3. Let P be a connected ring scheme of finite type over k. Then P is affine.

Download English Version:

https://daneshyari.com/en/article/10224056

Download Persian Version:

https://daneshyari.com/article/10224056

Daneshyari.com