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We show that the field Q(x, y), generated by two singular 
moduli x and y, is generated by their sum x + y, unless x
and y are conjugate over Q, in which case x + y generates a 
subfield of degree at most 2. We obtain a similar result for the 
product of two singular moduli.
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1. Introduction

A singular modulus is the j-invariant of an elliptic curve with complex multiplication. 
Given a singular modulus x we denote by Δx the discriminant of the associated imaginary 
quadratic order. We denote by h(Δ) the class number of the imaginary quadratic order 
of discriminant Δ. Recall that two singular moduli x and y are conjugate over Q if and 
only if Δx = Δy, and that all singular moduli of a given discriminant Δ form a full 
Galois orbit over Q. In particular, [Q(x) : Q] = h(Δx). For all details, see, for instance, 
[7, §7 and §11]

Starting from the ground-breaking article of André [3] equations involving singular 
moduli were studied by many authors, see [2,5,9] for a historical account and further 
references. In particular, Kühne [8] proved that equation x + y = 1 has no solutions in 
singular moduli x and y, and Bilu et al. [6] proved the same for the equation xy = 1. 
These results where generalized in [2] and [5].

Theorem 1.1. ([2,5]) Let x and y be singular moduli such that x + y ∈ Q or xy ∈ Q×. 
Then either h(Δx) = h(Δy) = 1 or Δx = Δy and h(Δx) = h(Δy) = 2.

Here the statement about x + y is (a special case of) Theorem 1.2 from [2], and the 
statement about xy is Theorem 1.1 from [5].

Note that lists of all imaginary quadratic discriminants Δ with h(Δ) ≤ 2 are widely 
available, so Theorem 1.1 is fully explicit.

We may mention also a work of Bilu, Luca and Masser [4], who proved that all but 
finitely many straight lines Ax + By = C with A,B ∈ Q̄× and C ∈ Q̄ have no more 
than two CM-points (points whose both coordinates are singular moduli). This result is, 
however, non-effective, because it relies on a non-effective theorem of Pila.

In view of Theorem 1.1 one may ask the following question: how much does the number 
field generated by the sum x + y or the product xy of two singular moduli differ from the 
field Q(x, y)? The objective of this note is to show that the fields Q(x + y) and Q(xy)
(provided xy �= 0) are subfields of Q(x, y) of degree at most 2, and in “most cases” each 
of x + y and xy generates Q(x, y). Here are our principal results.

Theorem 1.2. Let x and y be singular moduli. Then Q(x + y) = Q(x, y) if Δx �= Δy, and 
[Q(x, y) : Q(x + y)] ≤ 2 if Δx = Δy.

Theorem 1.3. Let x and y be non-zero singular moduli. Then Q(xy) = Q(x, y) if 
Δx �= Δy, and [Q(x, y) : Q(xy)] ≤ 2 if Δx = Δy.

Both the “sum” and the “product” statements of Theorem 1.1 are very special cases 
of these two theorems.

Note that in the case Δx = Δy, the statements [Q(x, y) : Q(x + y)] ≤ 2 and [Q(x, y) :
Q(xy)] ≤ 2 are best possible: one cannot expect that x + y or xy always generates Q(x, y)
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