ELSEVIER

Fields generated by sums and products of singular moduli

Bernadette Faye ${ }^{\text {a,* }}$, Antonin Riffaut ${ }^{\text {b }}$
${ }^{\text {a }}$ Université Cheikh Anta Diop de Dakar, BP: 5005, Dakar Fann, Senegal
${ }^{\text {b }}$ Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351, cours de la
Libération, 33405 Talence cedex, France

A R T I C L E I N F O

Article history:

Received 14 January 2018
Received in revised form 5 March 2018
Accepted 6 March 2018
Available online xxxx
Communicated by L. Smajlovic

Abstract

We show that the field $\mathbb{Q}(x, y)$, generated by two singular moduli x and y, is generated by their sum $x+y$, unless x and y are conjugate over \mathbb{Q}, in which case $x+y$ generates a subfield of degree at most 2 . We obtain a similar result for the product of two singular moduli.

© 2018 Elsevier Inc. All rights reserved.

Keywords:

Singular moduli
Complex multiplication
André-Oort
j-Invariant

Contents

1. Introduction 2
2. Preliminaries 3
3. Fields generated by singular moduli 4
4. Proof of Theorem 1.2 5
5. Proof of Theorem 1.3 7
References 10

[^0]https://doi.org/10.1016/j.jnt.2018.03.015
0022-314X/® 2018 Elsevier Inc. All rights reserved.

1. Introduction

A singular modulus is the j-invariant of an elliptic curve with complex multiplication. Given a singular modulus x we denote by Δ_{x} the discriminant of the associated imaginary quadratic order. We denote by $h(\Delta)$ the class number of the imaginary quadratic order of discriminant Δ. Recall that two singular moduli x and y are conjugate over \mathbb{Q} if and only if $\Delta_{x}=\Delta_{y}$, and that all singular moduli of a given discriminant Δ form a full Galois orbit over \mathbb{Q}. In particular, $[\mathbb{Q}(x): \mathbb{Q}]=h\left(\Delta_{x}\right)$. For all details, see, for instance, [7, §7 and §11]

Starting from the ground-breaking article of André [3] equations involving singular moduli were studied by many authors, see $[2,5,9]$ for a historical account and further references. In particular, Kühne [8] proved that equation $x+y=1$ has no solutions in singular moduli x and y, and Bilu et al. [6] proved the same for the equation $x y=1$. These results where generalized in [2] and [5].

Theorem 1.1. $([2,5])$ Let x and y be singular moduli such that $x+y \in \mathbb{Q}$ or $x y \in \mathbb{Q}^{\times}$. Then either $h\left(\Delta_{x}\right)=h\left(\Delta_{y}\right)=1$ or $\Delta_{x}=\Delta_{y}$ and $h\left(\Delta_{x}\right)=h\left(\Delta_{y}\right)=2$.

Here the statement about $x+y$ is (a special case of) Theorem 1.2 from [2], and the statement about $x y$ is Theorem 1.1 from [5].

Note that lists of all imaginary quadratic discriminants Δ with $h(\Delta) \leq 2$ are widely available, so Theorem 1.1 is fully explicit.

We may mention also a work of Bilu, Luca and Masser [4], who proved that all but finitely many straight lines $A x+B y=C$ with $A, B \in \overline{\mathbb{Q}}^{\times}$and $C \in \overline{\mathbb{Q}}$ have no more than two CM-points (points whose both coordinates are singular moduli). This result is, however, non-effective, because it relies on a non-effective theorem of Pila.

In view of Theorem 1.1 one may ask the following question: how much does the number field generated by the sum $x+y$ or the product $x y$ of two singular moduli differ from the field $\mathbb{Q}(x, y)$? The objective of this note is to show that the fields $\mathbb{Q}(x+y)$ and $\mathbb{Q}(x y)$ (provided $x y \neq 0$) are subfields of $\mathbb{Q}(x, y)$ of degree at most 2 , and in "most cases" each of $x+y$ and $x y$ generates $\mathbb{Q}(x, y)$. Here are our principal results.

Theorem 1.2. Let x and y be singular moduli. Then $\mathbb{Q}(x+y)=\mathbb{Q}(x, y)$ if $\Delta_{x} \neq \Delta_{y}$, and $[\mathbb{Q}(x, y): \mathbb{Q}(x+y)] \leq 2$ if $\Delta_{x}=\Delta_{y}$.

Theorem 1.3. Let x and y be non-zero singular moduli. Then $\mathbb{Q}(x y)=\mathbb{Q}(x, y)$ if $\Delta_{x} \neq \Delta_{y}$, and $[\mathbb{Q}(x, y): \mathbb{Q}(x y)] \leq 2$ if $\Delta_{x}=\Delta_{y}$.

Both the "sum" and the "product" statements of Theorem 1.1 are very special cases of these two theorems.

Note that in the case $\Delta_{x}=\Delta_{y}$, the statements $[\mathbb{Q}(x, y): \mathbb{Q}(x+y)] \leq 2$ and $[\mathbb{Q}(x, y)$: $\mathbb{Q}(x y)] \leq 2$ are best possible: one cannot expect that $x+y$ or $x y$ always generates $\mathbb{Q}(x, y)$

https://daneshyari.com/en/article/10224077

Download Persian Version:
https://daneshyari.com/article/10224077

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: bernadette@aims-senegal.org (B. Faye).

