ARTICLE IN PRESS

YJNTH:6012

Journal of Number Theory ••• (••••) •••-•••

Fields generated by sums and products of singular moduli

Bernadette Faye^{a,*}, Antonin Riffaut^b

^a Université Cheikh Anta Diop de Dakar, BP: 5005, Dakar Fann, Senegal
^b Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351, cours de la

Libération, 33 405 Talence cedex, France

ARTICLE INFO

Article history: Received 14 January 2018 Received in revised form 5 March 2018 Accepted 6 March 2018 Available online xxxx Communicated by L. Smajlovic

Keywords: Singular moduli Complex multiplication André-Oort *j*-Invariant

ABSTRACT

We show that the field $\mathbb{Q}(x, y)$, generated by two singular moduli x and y, is generated by their sum x + y, unless x and y are conjugate over \mathbb{Q} , in which case x + y generates a subfield of degree at most 2. We obtain a similar result for the product of two singular moduli.

© 2018 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	2
2.	Preliminaries	3
3.	Fields generated by singular moduli	4
4.	Proof of Theorem 1.2	5
5.	Proof of Theorem 1.3	7
Refere	ences 1	0

* Corresponding author. E-mail address: bernadette@aims-senegal.org (B. Faye).

https://doi.org/10.1016/j.jnt.2018.03.015 0022-314X/© 2018 Elsevier Inc. All rights reserved.

2

ARTICLE IN PRESS

B. Faye, A. Riffaut / Journal of Number Theory ••• (••••) •••-•••

1. Introduction

A singular modulus is the *j*-invariant of an elliptic curve with complex multiplication. Given a singular modulus x we denote by Δ_x the discriminant of the associated imaginary quadratic order. We denote by $h(\Delta)$ the class number of the imaginary quadratic order of discriminant Δ . Recall that two singular moduli x and y are conjugate over \mathbb{Q} if and only if $\Delta_x = \Delta_y$, and that all singular moduli of a given discriminant Δ form a full Galois orbit over \mathbb{Q} . In particular, $[\mathbb{Q}(x):\mathbb{Q}] = h(\Delta_x)$. For all details, see, for instance, [7, §7 and §11]

Starting from the ground-breaking article of André [3] equations involving singular moduli were studied by many authors, see [2,5,9] for a historical account and further references. In particular, Kühne [8] proved that equation x + y = 1 has no solutions in singular moduli x and y, and Bilu et al. [6] proved the same for the equation xy = 1. These results where generalized in [2] and [5].

Theorem 1.1. ([2,5]) Let x and y be singular moduli such that $x + y \in \mathbb{Q}$ or $xy \in \mathbb{Q}^{\times}$. Then either $h(\Delta_x) = h(\Delta_y) = 1$ or $\Delta_x = \Delta_y$ and $h(\Delta_x) = h(\Delta_y) = 2$.

Here the statement about x + y is (a special case of) Theorem 1.2 from [2], and the statement about xy is Theorem 1.1 from [5].

Note that lists of all imaginary quadratic discriminants Δ with $h(\Delta) \leq 2$ are widely available, so Theorem 1.1 is fully explicit.

We may mention also a work of Bilu, Luca and Masser [4], who proved that all but finitely many straight lines Ax + By = C with $A, B \in \overline{\mathbb{Q}}^{\times}$ and $C \in \overline{\mathbb{Q}}$ have no more than two CM-points (points whose both coordinates are singular moduli). This result is, however, non-effective, because it relies on a non-effective theorem of Pila.

In view of Theorem 1.1 one may ask the following question: how much does the number field generated by the sum x + y or the product xy of two singular moduli differ from the field $\mathbb{Q}(x, y)$? The objective of this note is to show that the fields $\mathbb{Q}(x + y)$ and $\mathbb{Q}(xy)$ (provided $xy \neq 0$) are subfields of $\mathbb{Q}(x, y)$ of degree at most 2, and in "most cases" each of x + y and xy generates $\mathbb{Q}(x, y)$. Here are our principal results.

Theorem 1.2. Let x and y be singular moduli. Then $\mathbb{Q}(x+y) = \mathbb{Q}(x,y)$ if $\Delta_x \neq \Delta_y$, and $[\mathbb{Q}(x,y) : \mathbb{Q}(x+y)] \leq 2$ if $\Delta_x = \Delta_y$.

Theorem 1.3. Let x and y be non-zero singular moduli. Then $\mathbb{Q}(xy) = \mathbb{Q}(x,y)$ if $\Delta_x \neq \Delta_y$, and $[\mathbb{Q}(x,y) : \mathbb{Q}(xy)] \leq 2$ if $\Delta_x = \Delta_y$.

Both the "sum" and the "product" statements of Theorem 1.1 are very special cases of these two theorems.

Note that in the case $\Delta_x = \Delta_y$, the statements $[\mathbb{Q}(x, y) : \mathbb{Q}(x+y)] \leq 2$ and $[\mathbb{Q}(x, y) : \mathbb{Q}(xy)] \leq 2$ are best possible: one cannot expect that x + y or xy always generates $\mathbb{Q}(x, y)$

Download English Version:

https://daneshyari.com/en/article/10224077

Download Persian Version:

https://daneshyari.com/article/10224077

Daneshyari.com