

On sums of two and three roots of unity

Artūras Dubickas
Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

A R T I C L E I N F O

Article history:

Received 9 February 2018
Received in revised form 7 March 2018
Accepted 10 March 2018
Available online xxxx
Communicated by F. Pellarin

MSC:

11R06
11R18
Keywords:
Roots of unity
Mahler measure
Small exponential sum

A B S T R A C T

Let $\alpha \neq 0$ be a sum of some k distinct N th roots of unity, where $2 \leq k<N$. In 1986, Myerson raised the following two problems. How small can $|\alpha|$ be? How large can the modulus of the product of all conjugates of α lying in the disc $|z|<1$ be? A simple Liouville type argument gives the lower bound k^{-N+2} for these quantities, so the problem is to find appropriate upper bounds. As for the first question, for $k \geq 5$, it remains a huge gap between lower and the best known upper bound $N^{-d_{k}}$. In this note, we give a complete answer to the second question of Myerson for $k=2$. For $k=3$ and N large prime, we show that a positive proportion of the conjugates of any such α lie in the disc $|z| \leq \varrho$, where $\varrho<1$. This implies a naturally expected upper bound.
© 2018 Published by Elsevier Inc.

1. Introduction

Throughout, for an algebraic integer $\alpha \neq 0$ of degree D over \mathbb{Q} with conjugates $\alpha_{1}, \ldots, \alpha_{D}$, we denote by $\Lambda(\alpha)$ the modulus of the product of the conjugates of α lying inside the unit circle:

[^0]https://doi.org/10.1016/j.jnt.2018.03.017
0022-314X/® 2018 Published by Elsevier Inc.
$$
\Lambda(\alpha):=\prod_{j=1}^{D} \min \left\{1,\left|\alpha_{j}\right|\right\}
$$

Clearly,

$$
\begin{equation*}
\Lambda(\alpha)=\frac{|\operatorname{Norm}(\alpha)|}{M(\alpha)} \tag{1}
\end{equation*}
$$

where $M(\alpha):=\prod_{j=1}^{D} \max \left\{1,\left|\alpha_{j}\right|\right\}$ is the Mahler measure of α and $\operatorname{Norm}(\alpha):=\prod_{j=1}^{D} \alpha_{j}$ is the norm of α.

Let k and N be two positive integers satisfying $2 \leq k<N$. In [12], Myerson considered the set $A(k, N)$ of algebraic numbers α that can be expressed by the sum of k distinct N th roots of unity, that is,

$$
A(k, N):=\left\{\zeta^{a_{1}}+\cdots+\zeta^{a_{k}}\right\}
$$

where $\zeta=e^{2 \pi i / N}$ and $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ satisfy $0 \leq a_{1}<\cdots<a_{k} \leq N-1$.
Since each $\alpha \in A(k, N) \backslash\{0\}$ belongs to the field $\mathbb{Q}\left(e^{2 \pi i / N}\right)$, its degree $\operatorname{deg} \alpha$ divides $\varphi(N)$, where φ is Euler's totient function. In fact, the union of all such sets $A(k, N)$ represents the set of algebraic integers of the maximal abelian extension of \mathbb{Q}. See, e.g., Lemma 5 in [1] for an upper bound of the cardinality of such numbers.

In [12], motivated by [11] and assuming that k is fixed and N is large, Myerson raised the following two problems for $\alpha \in A(k, N) \backslash\{0\}$:

- How small in terms of k and N (or $\operatorname{deg} \alpha$) can $|\alpha|$ be?
- How large in terms of k and N (or $\operatorname{deg} \alpha$) can $\Lambda(\alpha)<1$ be?

One can easily give some lower bounds using a simple Liouville type argument. Let $t \geq 1$ be the number of conjugates of $\alpha \in A(k, N) \backslash\{0\}$, lying in $|z|<1$. (Evidently, $\Lambda(\alpha)=1$ if $t=0$.) Since $|\operatorname{Norm}(\alpha)| \geq 1$ and each conjugate of such α has modulus at most k, by (1), we obtain

$$
\begin{equation*}
\Lambda(\alpha) \geq M(\alpha)^{-1} \geq k^{-\operatorname{deg} \alpha+t} \geq k^{-\varphi(N)+t} \geq k^{-N+2} \tag{2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
|\alpha| \geq \Lambda(\alpha) \geq k^{-N+2} \tag{3}
\end{equation*}
$$

for each nonzero $\alpha \in A(k, N)$.
As for the bound (3), one should say that the best upper bounds obtained for some $\alpha \in A(k, N)$ are of the form

$$
\begin{equation*}
|\alpha| \ll N^{-d_{k}} \tag{4}
\end{equation*}
$$

Download Persian Version:
https://daneshyari.com/article/10224079

Daneshyari.com

[^0]: E-mail address: arturas.dubickas@mif.vu.lt.

