Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On sums of two and three roots of unity

Artūras Dubickas

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

ARTICLE INFO

Article history:
Received 9 February 2018
Received in revised form 7 March
2018
Accepted 10 March 2018
Available online xxxx
Communicated by F. Pellarin

MSC: 11R06 11R18

Keywords:
Roots of unity
Mahler measure
Small exponential sum

ABSTRACT

Let $\alpha \neq 0$ be a sum of some k distinct Nth roots of unity, where $2 \leq k < N$. In 1986, Myerson raised the following two problems. How small can $|\alpha|$ be? How large can the modulus of the product of all conjugates of α lying in the disc |z| < 1 be? A simple Liouville type argument gives the lower bound k^{-N+2} for these quantities, so the problem is to find appropriate upper bounds. As for the first question, for $k \geq 5$, it remains a huge gap between lower and the best known upper bound N^{-d_k} . In this note, we give a complete answer to the second question of Myerson for k=2. For k=3 and N large prime, we show that a positive proportion of the conjugates of any such α lie in the disc $|z| \leq \varrho$, where $\varrho < 1$. This implies a naturally expected upper bound.

© 2018 Published by Elsevier Inc.

1. Introduction

Throughout, for an algebraic integer $\alpha \neq 0$ of degree D over \mathbb{Q} with conjugates $\alpha_1, \ldots, \alpha_D$, we denote by $\Lambda(\alpha)$ the modulus of the product of the conjugates of α lying inside the unit circle:

E-mail address: arturas.dubickas@mif.vu.lt.

https://doi.org/10.1016/j.jnt.2018.03.017 0022-314X/© 2018 Published by Elsevier Inc.

A. Dubickas / Journal of Number Theory ••• (••••) •••-•••

$$\Lambda(\alpha) := \prod_{j=1}^{D} \min\{1, |\alpha_j|\}.$$

Clearly,

$$\Lambda(\alpha) = \frac{|\text{Norm}(\alpha)|}{M(\alpha)},\tag{1}$$

where $M(\alpha) := \prod_{j=1}^{D} \max\{1, |\alpha_j|\}$ is the Mahler measure of α and $\text{Norm}(\alpha) := \prod_{j=1}^{D} \alpha_j$ is the norm of α .

Let k and N be two positive integers satisfying $2 \le k < N$. In [12], Myerson considered the set A(k, N) of algebraic numbers α that can be expressed by the sum of k distinct Nth roots of unity, that is,

$$A(k,N) := \{ \zeta^{a_1} + \dots + \zeta^{a_k} \},$$

where $\zeta = e^{2\pi i/N}$ and $a_1, \ldots, a_k \in \mathbb{Z}$ satisfy $0 \le a_1 < \cdots < a_k \le N-1$.

Since each $\alpha \in A(k,N) \setminus \{0\}$ belongs to the field $\mathbb{Q}(e^{2\pi i/N})$, its degree $\deg \alpha$ divides $\varphi(N)$, where φ is Euler's totient function. In fact, the union of all such sets A(k,N) represents the set of algebraic integers of the maximal abelian extension of \mathbb{Q} . See, e.g., Lemma 5 in [1] for an upper bound of the cardinality of such numbers.

In [12], motivated by [11] and assuming that k is fixed and N is large, Myerson raised the following two problems for $\alpha \in A(k, N) \setminus \{0\}$:

- How small in terms of k and N (or $\deg \alpha$) can $|\alpha|$ be?
- How large in terms of k and N (or deg α) can $\Lambda(\alpha) < 1$ be?

One can easily give some lower bounds using a simple Liouville type argument. Let $t \geq 1$ be the number of conjugates of $\alpha \in A(k, N) \setminus \{0\}$, lying in |z| < 1. (Evidently, $\Lambda(\alpha) = 1$ if t = 0.) Since $|\text{Norm}(\alpha)| \geq 1$ and each conjugate of such α has modulus at most k, by (1), we obtain

$$\Lambda(\alpha) \ge M(\alpha)^{-1} \ge k^{-\deg \alpha + t} \ge k^{-\varphi(N) + t} \ge k^{-N+2}. \tag{2}$$

Hence,

$$|\alpha| \ge \Lambda(\alpha) \ge k^{-N+2} \tag{3}$$

for each nonzero $\alpha \in A(k, N)$.

As for the bound (3), one should say that the best upper bounds obtained for some $\alpha \in A(k, N)$ are of the form

$$|\alpha| \ll N^{-d_k},\tag{4}$$

2

Download English Version:

https://daneshyari.com/en/article/10224079

Download Persian Version:

https://daneshyari.com/article/10224079

<u>Daneshyari.com</u>