ARTICLE IN PRESS

YJNTH:6020

Journal of Number Theory ••• (••••) •••-•••

Some results for the irreducibility of truncated binomial expansions $\stackrel{\bigstar}{\approx}$

Anuj Jakhar*, Neeraj Sangwan

Indian Institute of Science Education and Research (IISER), Mohali Sector-81, S. A. S. Nagar-140306, Punjab, India

ARTICLE INFO

Article history: Received 26 March 2017 Received in revised form 2 April 2018 Accepted 13 April 2018 Available online xxxx Communicated by S.J. Miller

MSC: 11C08 11R09 12E05

Keywords: Irreducible polynomials Truncated binomial

ABSTRACT

For positive integers k and n with $k \leq n-1$, let $P_{n,k}(x)$ denote the polynomial $\sum_{j=0}^{k} {n \choose j} x^j$, where ${n \choose j} = \frac{n!}{j! (n-j)!}$. In 2011, Khanduja, Khassa and Laishram proved the irreducibility of $P_{n,k}(x)$ over the field \mathbb{Q} of rational numbers for those n, k for which $2 \leq 2k \leq n < (k+1)^3$. In this paper, we extend the above result and prove that if $2 \leq 2k \leq n < (k+1)^{e+1}$ for some positive integer e and the smallest prime factor of k is greater than e, then there exists an explicitly constructible constant C_e depending only on e such that the polynomial $P_{n,k}(x)$ is irreducible over \mathbb{Q} for $k \geq C_e$.

© 2018 Published by Elsevier Inc.

Please cite this article in press as: A. Jakhar, N. Sangwan, Some results for the irreducibility of truncated binomial expansions, J. Number Theory (2018), https://doi.org/10.1016/j.jnt.2018.04.001

 $^{^{\}circ}$ The financial support from IISER Mohali is gratefully acknowledged by the authors.

^{*} All correspondence may be addressed to this author.

E-mail addresses: anujjakhar@iisermohali.ac.in (A. Jakhar), neerajsan@iisermohali.ac.in (N. Sangwan).

2

A. Jakhar, N. Sangwan / Journal of Number Theory ••• (••••) •••-•••

1. Introduction

For positive integers k and n with $k \leq n-1$, let $P_{n,k}(x)$ denote the polynomial $\sum_{j=0}^{k} {n \choose j} x^{j}$, where ${n \choose j} = \frac{n!}{j! (n-j)!}$. In 2007, Filaseta, Kumchev and Pasechnik [2] considered the problem of irreducibility of $P_{n,k}(x)$ over the field \mathbb{Q} of rational numbers. They proved that for any fixed integer $k \geq 3$,¹ there exists an integer n_0 depending on k such that $P_{n,k}(x)$ is irreducible over \mathbb{Q} for every $n \geq n_0$. In 2011, Khanduja, Khassa and Laishram proved the irreducibility of $P_{n,k}(x)$ for those n,k for which $2 \leq 2k \leq n < (k+1)^3$ (cf. [3]). In this paper we extend the above result and prove the following theorem.

Theorem 1.1. Let k, n, e be positive integers with $2 \le 2k \le n < (k+1)^{e+1}$. Let M_e denote the integer $\frac{(e+1)(3e+1)}{4}$ if e is odd and $\frac{e(3e+2)}{4}$ if e is an even integer. Let L_e denote the smallest integer greater than or equal to $\frac{4}{3}(M_e + 2)$. If k is greater than or equal to the L_e th prime number, then either $P_{n,k}(x)$ is irreducible over \mathbb{Q} or it has a factor of degree $\frac{ik}{j}(\le \frac{k}{2})$ for some $1 \le i \le \left[\frac{e+1}{2}\right], j \le e$, where [r] stands for the greatest integer not exceeding r.

It may be pointed out that when e = 2 in the above theorem, then either $P_{n,k}(x)$ is irreducible over \mathbb{Q} or it has a factor of degree $\frac{k}{2}$ for $38 \leq 2k \leq n < (k+1)^3$. Also when $106 \leq 2k \leq n < (k+1)^4$ and $P_{n,k}(x)$ does not have factors of degree $\frac{k}{3}$, $\frac{k}{2}$, then $P_{n,k}(x)$ is irreducible over \mathbb{Q} .

We indeed prove the following slightly stronger result from which Theorem 1.1 quickly follows.

Theorem 1.2. Let k, n be positive integers such that $2k \leq n$. Let e be the maximum positive integer such that there exists² a prime p > k dividing $n(n-1)\cdots(n-k+1)$ with exact power e. Let M_e , L_e be as in Theorem 1.1 and p_{L_e} denote the L_e th prime number. If $k \geq p_{L_e}$, then either $P_{n,k}(x)$ is irreducible over \mathbb{Q} or it must have a factor of degree $\frac{ik}{j} (\leq \frac{k}{2})$ for some $1 \leq i \leq \left[\frac{e+1}{2}\right]$ with $j \leq e$.

The following corollary yields irreducibility of truncated binomial for certain n, k and immediate consequence of the above theorem.

¹ For k = 2, $P_{n,k}(x)$ has negative discriminant and hence is irreducible over \mathbb{Q} .

² Sylvester [5] proved in 1892 that a product of k consecutive numbers $n, n-1, \dots, n-k+1$ with $n \ge 2k$ is divisible by a prime exceeding k.

Please cite this article in press as: A. Jakhar, N. Sangwan, Some results for the irreducibility of truncated binomial expansions, J. Number Theory (2018), https://doi.org/10.1016/j.jnt.2018.04.001

Download English Version:

https://daneshyari.com/en/article/10224081

Download Persian Version:

https://daneshyari.com/article/10224081

Daneshyari.com