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For positive integers k and n with k � n −1, let Pn,k(x) denote 

the polynomial 
k∑

j=0

(n
j

)
xj , where 

(
n
j

)
= n!

j! (n−j)! . In 2011, 

Khanduja, Khassa and Laishram proved the irreducibility of 
Pn,k(x) over the field Q of rational numbers for those n, k for 
which 2 ≤ 2k ≤ n < (k + 1)3. In this paper, we extend the 
above result and prove that if 2 ≤ 2k ≤ n < (k + 1)e+1 for 
some positive integer e and the smallest prime factor of k is 
greater than e, then there exists an explicitly constructible 
constant Ce depending only on e such that the polynomial 
Pn,k(x) is irreducible over Q for k ≥ Ce.
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1. Introduction

For positive integers k and n with k � n − 1, let Pn,k(x) denote the polynomial 
k∑

j=0

(
n

j

)
xj , where 

(
n
j

)
= n!

j! (n−j)! . In 2007, Filaseta, Kumchev and Pasechnik [2] con-

sidered the problem of irreducibility of Pn,k(x) over the field Q of rational numbers. 
They proved that for any fixed integer k � 3,1 there exists an integer n0 depending 
on k such that Pn,k(x) is irreducible over Q for every n � n0. In 2011, Khanduja, 
Khassa and Laishram proved the irreducibility of Pn,k(x) for those n, k for which 
2 ≤ 2k � n < (k + 1)3 (cf. [3]). In this paper we extend the above result and prove 
the following theorem.

Theorem 1.1. Let k, n, e be positive integers with 2 ≤ 2k � n < (k+1)e+1. Let Me denote 
the integer (e+1)(3e+1)

4 if e is odd and e(3e+2)
4 if e is an even integer. Let Le denote the 

smallest integer greater than or equal to 4
3(Me + 2). If k is greater than or equal to the 

Le
th prime number, then either Pn,k(x) is irreducible over Q or it has a factor of degree 

ik
j (≤ k

2 ) for some 1 ≤ i ≤
[
e + 1

2

]
, j ≤ e, where [r] stands for the greatest integer not 

exceeding r.

It may be pointed out that when e = 2 in the above theorem, then either Pn,k(x) is 
irreducible over Q or it has a factor of degree k2 for 38 ≤ 2k ≤ n < (k + 1)3. Also when 
106 ≤ 2k ≤ n < (k + 1)4 and Pn,k(x) does not have factors of degree k3 , k2 , then Pn,k(x)
is irreducible over Q.

We indeed prove the following slightly stronger result from which Theorem 1.1 quickly 
follows.

Theorem 1.2. Let k, n be positive integers such that 2k � n. Let e be the maximum 
positive integer such that there exists2 a prime p > k dividing n(n −1) · · · (n −k+1) with 
exact power e. Let Me, Le be as in Theorem 1.1 and pLe

denote the Le
th prime number. 

If k ≥ pLe
, then either Pn,k(x) is irreducible over Q or it must have a factor of degree 

ik
j (≤ k

2 ) for some 1 ≤ i ≤
[
e + 1

2

]
with j ≤ e.

The following corollary yields irreducibility of truncated binomial for certain n, k and 
immediate consequence of the above theorem.

1 For k = 2, Pn,k(x) has negative discriminant and hence is irreducible over Q.
2 Sylvester [5] proved in 1892 that a product of k consecutive numbers n, n −1, · · · , n −k+1 with n ≥ 2k

is divisible by a prime exceeding k.
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