Some results for the irreducibility of truncated binomial expansions ${ }^{*}$

Anuj Jakhar*, Neeraj Sangwan
Indian Institute of Science Education and Research (IISER), Mohali Sector-81, S. A. S. Nagar-140306, Punjab, India

A R T I C L E I N F O

Article history:

Received 26 March 2017
Received in revised form 2 April 2018
Accepted 13 April 2018
Available online xxxx
Communicated by S.J. Miller

$M S C$:

11C08
11R09
12 E 05

Keywords:

Irreducible polynomials
Truncated binomial

A B S T R A C T

For positive integers k and n with $k \leqslant n-1$, let $P_{n, k}(x)$ denote the polynomial $\sum_{j=0}^{k}\binom{n}{j} x^{j}$, where $\binom{n}{j}=\frac{n!}{j!(n-j)!}$. In 2011, Khanduja, Khassa and Laishram proved the irreducibility of $P_{n, k}(x)$ over the field \mathbb{Q} of rational numbers for those n, k for which $2 \leq 2 k \leq n<(k+1)^{3}$. In this paper, we extend the above result and prove that if $2 \leq 2 k \leq n<(k+1)^{e+1}$ for some positive integer e and the smallest prime factor of k is greater than e, then there exists an explicitly constructible constant C_{e} depending only on e such that the polynomial $P_{n, k}(x)$ is irreducible over \mathbb{Q} for $k \geq C_{e}$.
© 2018 Published by Elsevier Inc.

[^0]https://doi.org/10.1016/j.jnt.2018.04.001
0022-314X/® 2018 Published by Elsevier Inc.

1. Introduction

For positive integers k and n with $k \leqslant n-1$, let $P_{n, k}(x)$ denote the polynomial $\sum_{j=0}^{k}\binom{n}{j} x^{j}$, where $\binom{n}{j}=\frac{n!}{j!(n-j)!}$. In 2007, Filaseta, Kumchev and Pasechnik [2] considered the problem of irreducibility of $P_{n, k}(x)$ over the field \mathbb{Q} of rational numbers. They proved that for any fixed integer $k \geqslant 3,{ }^{1}$ there exists an integer n_{0} depending on k such that $P_{n, k}(x)$ is irreducible over \mathbb{Q} for every $n \geqslant n_{0}$. In 2011, Khanduja, Khassa and Laishram proved the irreducibility of $P_{n, k}(x)$ for those n, k for which $2 \leq 2 k \leqslant n<(k+1)^{3}$ (cf. [3]). In this paper we extend the above result and prove the following theorem.

Theorem 1.1. Let k, n, e be positive integers with $2 \leq 2 k \leqslant n<(k+1)^{e+1}$. Let M_{e} denote the integer $\frac{(e+1)(3 e+1)}{4}$ if e is odd and $\frac{e(3 e+2)}{4}$ if e is an even integer. Let L_{e} denote the smallest integer greater than or equal to $\frac{4}{3}\left(M_{e}+2\right)$. If k is greater than or equal to the $L_{e}{ }^{\text {th }}$ prime number, then either $P_{n, k}(x)$ is irreducible over \mathbb{Q} or it has a factor of degree $\frac{i k}{j}\left(\leq \frac{k}{2}\right)$ for some $1 \leq i \leq\left[\frac{e+1}{2}\right], j \leq e$, where $[r]$ stands for the greatest integer not exceeding r.

It may be pointed out that when $e=2$ in the above theorem, then either $P_{n, k}(x)$ is irreducible over \mathbb{Q} or it has a factor of degree $\frac{k}{2}$ for $38 \leq 2 k \leq n<(k+1)^{3}$. Also when $106 \leq 2 k \leq n<(k+1)^{4}$ and $P_{n, k}(x)$ does not have factors of degree $\frac{k}{3}, \frac{k}{2}$, then $P_{n, k}(x)$ is irreducible over \mathbb{Q}.

We indeed prove the following slightly stronger result from which Theorem 1.1 quickly follows.

Theorem 1.2. Let k, n be positive integers such that $2 k \leqslant n$. Let e be the maximum positive integer such that there exists ${ }^{2}$ a prime $p>k$ dividing $n(n-1) \cdots(n-k+1)$ with exact power e. Let M_{e}, L_{e} be as in Theorem 1.1 and $p_{L_{e}}$ denote the $L_{e}{ }^{\text {th }}$ prime number. If $k \geq p_{L_{e}}$, then either $P_{n, k}(x)$ is irreducible over \mathbb{Q} or it must have a factor of degree $\frac{i k}{j}\left(\leq \frac{k}{2}\right)$ for some $1 \leq i \leq\left[\frac{e+1}{2}\right]$ with $j \leq e$.

The following corollary yields irreducibility of truncated binomial for certain n, k and immediate consequence of the above theorem.

[^1]
https://daneshyari.com/en/article/10224081

Download Persian Version:
https://daneshyari.com/article/10224081

Daneshyari.com

[^0]: The financial support from IISER Mohali is gratefully acknowledged by the authors.

 * All correspondence may be addressed to this author.

 E-mail addresses: anujjakhar@iisermohali.ac.in (A. Jakhar), neerajsan@iisermohali.ac.in
 (N. Sangwan).

[^1]: ${ }^{1}$ For $k=2, P_{n, k}(x)$ has negative discriminant and hence is irreducible over \mathbb{Q}.
 ${ }^{2}$ Sylvester [5] proved in 1892 that a product of k consecutive numbers $n, n-1, \cdots, n-k+1$ with $n \geq 2 k$ is divisible by a prime exceeding k.

